

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

dm110

Low-power high performance 3-axes magnetometer

1、Features

1.1 Functions Features:

- ♦ 3-axis magnetometer
- ♦ Wide supply voltage:2.2v to 3.6v
- Independent IOs supply(1.65v) and supply voltage compatible
- Idle mode(power down mode)power consumption down to 2uA(max:3uA)
- I2C/SPI digital output interface
 - I2C bus interface
 - Standard mode and fast mode
 - 3-wire SPI or 4-wire SPI
- 16-bit resolution
 - Built-in 19-bit A to D converter for magnetometer data out
 - The highestSensitivity:1.88mG/LSB(0.188uT/LSB)
- Operation mode
 - Power-down mode
 - Burst mode
 - Single measurement mode
 - Wake-up on change mode
 - External trigger measurement mode
- One programmable interrupt generator for DRDY or Trig function
 - DRDY function for measurement data ready
- Built-in oscillator for internal clock source
- Power on reset circuit
- Embedded temperature sensor to compensate sensor temperature effect
- Embedded self-test to built-in internal magnetic field generator
- ♦ Full scale:±48Gauss
- RoHS and "Green" compliant
- Operating temperatures:

Operating supply voltage:

- Analog power supply :+2.2v to +3.6v
- Digital interface supply :+1.65v to analog supply voltage

Current consumption:

- Power-down: 2uA typ.
- Measurement:
 - Average power consumption at 10Hz repetition rate:280uA type.

1.2 **Order information**

Model name	Full scale range	Package description	
dm110 ±48Gauss		14PIN/BGA/1.6mm*1.6mm*0.81mm	

1.3 Applications

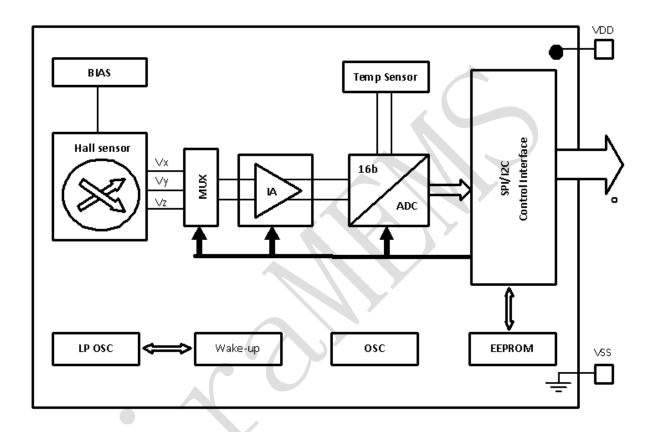
- Electronic compass
- Handheld devices
- Navigation System
- Frequency changer
- Smartphone
- Tablet PC
- UPS system
- Weld system
- Solar device
- Wind turbine

1.4 General Description

The device is a low-power high performance three axes linear magnetometer belonging to the "dm" family, based on the hall-effect technology. The output signals(raw X,Y and Z data)will be provided through the I2C standard mode and fast mode protocol, or via half-duplex SPI protocol (3-wire SPI or 4-wire SPI).

The device provides excellent temperature stability and high resolution over the whole operating temperature range from -40 $^\circ$ C to +85 $^\circ$ C. And there is an on-board non-volatile memory to store calibration data on-chip.

The self-test function with internal magnetic source allows the user to check the functioning of the sensor in the final application. The device may be configured to generate interrupt signals by the inertial DARY events. The timing of interrupt generators is programmable by the end user on the fly.


The IC is available in small thin plastic ball grid array package (BGA), it incorporates magnetic sensors for detecting terrestrial magnetism in the X-axis, Y-axis, and Z-axis, a sensor driving circuit, signal amplifier chain, and an arithmetic circuit for processing the signal from each sensor.

CONTENTS

1、Features	1
1.1、Functions Features:	1
1.2 Vorder information	2
1.3 Applications	2
1.4 General Description	2
2、Functional circuit	4
2.1、Functional Block Diagram	4
2.2 Slock function	4
2.3、 Pin Function	5
3、 Functional Specification	
3.1 Magnetic sensor	6
3.3、Operation Mode The dm110 can operate in 3 modes:	6
4 Overall Characteristics	
4.1、Absolute Maximum Ratings	
4.2 Recommended operating conditions	10
4.3 Sensor Specification	10
4.4、 Electrical Specification	11
5、Serial interface	
5.1、SPI protocol	
5.2、I2C protocol	
6、Memory Map	
6.1、Register Table	18
6.2、Register Description	19
7、Command List	
7.1、Command Table	24
7.2 $\$ Status byte	24
7.3、Command Usage:	25
8、Typical application	28
8.1、I2C bus interface external connection	28
8.2、4-wire SPI interface external connection	28
9、Package information	29
9.1、Pin Assignment	29
9.2、outline dimensions	
10、Revision History	31
11、 Sales and support	32

2、Functional circuit

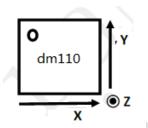
2.1 Functional Block Diagram

2.2、Block function

Block	Function
BIAS	Bias circuit for constant-current driving of hall elements
Hall sensor	Monolithic Hall elements
MUX	Multiplexer for selecting hall elements
IA	Amplifier used to amplify the magnetic sensor signal.
16b/ADC	Obtain 16-bit analog-to-digital conversion data
Temp Sensor	Temperature sensor
SPI/I2C control interface	Exchanges data with an external CPU
	DRDY pin indicates sensor measurement end and data is
	ready to be read.
	I2C bus interface using two pins, namely, SCL and SDA.
	Standard mode and Fast mode are supported. The
	low-voltage specification can be supported by applying

	1.65V to the Vdd_IO pin.
	4-wire SPI is also supported by SK,SI,SO and CSB pins.
	4-wire SPI works in Vdd_IO pin voltage down to
	1.65V,too
LP OSC	Generates a Low-power operating clock for sequencer
Wake-up	Wakeup module, for change sensor mode of sleep and
	operation mode
OSC	Generates an operating clock for sensor measurement
EEPROM	store calibration data

2.3 Pin Function


BGA Pin No.	Pin name	1/0	Power supply system	Туре	Function
A1	INT/TRIG	1/0	VDD_IO	CMOS	INT mode: Data ready output pin. "H" active, Informs measurement ended and data is ready to be read. TRIG mode: external trigger pulse input pin. Enable only in external trigger mode.
A2	CS	1	VDD_IO	СМОЅ	I2C/SPI mode selection(1:I2C mode enable;0:SPI mode enable)
A3	SCL/SCLK	1/0	VDD_IO	смоѕ	SCL: control data clock input pin Input: Schmidt trigger SCLK: serial clock input pin when the SPI mode is selected.
A4	SDA/MOSI	1/0	VDD_IO	CMOS	SDA: control data input/output pin Input: Schmidt trigger; MOSI: serial data input pin when the SPI mode is selected. Output: Open drain
B1	VDD	-	-	Power	Analog power supply pin
B2	NC	-	-	-	Not connected
B3	NC	-	-	-	Not connected
B4	MISO	-	-	-	Serial data output pin when the 4-wire SPI mode is selected.
C1	VSS	-	-	Power	Ground pin
C2	NC	-	-	-	Not connected
C3	INT/TRIG	I/O	VDD_IO	CMOS	INT mode: Data ready output pin. "H" active, Informs measurement ended and data is

					ready to be read.
					TRIG mode: external trigger pulse
					input pin. Enable only in external
					trigger mode.
C4	VDD_IO	-	-	Power	Digital interface positive power
					supply pin
D1	A0	I	VDD	CMOS	When the I2C mode is selected,A0
					is slave address 0 input
					pin.0:connect to VSS;1:connect to
					VDD
D2	A1	I	VDD	CMOS	When the I2C mode is selected,A1
					is slave address 1 input pin.
					0:connect to VSS;1:connect to VDD
D3	NC	-	-	-	Not connected
D4	NC	-	-	-	Not connected

3 Functional Specification

3.1、 Magnetic sensor

The measurement data increases as the magnetic flux density increases in the arrow directions.

3.3、Operation Mode

The dm110 can operate in 3 modes:

- Burst mode
- Single Measure mode
- Wake-Upon Change

3.3.1 Burst mode

The ASIC will have a programmable data rate (BURST_DATA_RATE[6:0] of ox01 register) at which it will operate. This data rate implies auto-wake up and sequencing of the ASIC, flagging that

data is ready on a dedicated pin (INT/DRDY). The maximum data rate will correspond to 1/n*TCONV (n=3) incase of 3 axes magnetic data. The time during which the ASIC has a counter running, but is not doing an actual conversion is called the Standby mode (STBY).

When the sensor is operating in burst mode, it will make conversions at specific time intervals. The programmability of the user is the following:

- Burst speed(TINTERVAL)
- Conversion time(TCONV)
- Axes/Temperature (MDATA)

Whenever the sensor has made the selected conversions (based on MDATA), the INT/DRDY pin will be set (active H) to indicate that the data is ready. It will remain high until the master has sent the command to read out at least one of the converted quantities (ZYXT). Should the master have failed to read out any of them by the time the sensor has made a new conversion, the INT/DRDY pin will be strobed low for 10us, and the next rising edge will indicate a new set of data is ready.

3.3.2 Single Measure mode

The master will ask for data via the corresponding protocol (I²C or SPI), waking up the ASIC to make a single conversion, immediately followed by an automatic return to sleep mode(IDLE) until the next polling of the master. This polling can also be done by strobing the TRG pin, which has the same effect as sending a protocol command for a single measurement.

Whenever the sensor is set to this mode (or after start up) the sensor goes to the IDLE state where it awaits a command from the master to perform a certain acquisition. The duration of the acquisition will be the concatenation of the T_{STBY} , T_{ACTIVE} and n^*T_{CONV} (n=numbers of axes). The conversion time will effectively be programmable by the user, but is equally a function of the required axes/temperature to be measured.

Upon reception of such a polling command from the master, the sensor will make the necessary acquisitions, and set the INT/DRDY pin high to signal that the measurement has been performed and the master can read out the data on the bus at his convenience. The INT/DRDY will be cleared either when:

- The master has issued a command to read out at least one of the measured components
- The master issues an Exit(EX) command to cancel the measurement
- The chip is reset, after POR(Power-on reset) or Reset command(RT)

3.3.4 Wake-Up on Change

This mode is similar to the burst mode in the sense that the device will be auto-sequencing, with the difference that the measured component(s) is/are compared with a reference and in case the difference is bigger than a user-defined threshold, the INT/DRDY pin is set. The user can select which axes and/or temperature fall under this cyclic check, and which thresholds are allowed.

The Wake-Upon Change (WOC) functionality can be set by the master with as main purpose to only receive an interrupt when a certain threshold is crossed. The WOC mode will always compare a new burst value with a reference value in order to assess if the difference between both exceeds a user-defined threshold. The reference value is defined as one of the following:

- The first measurement of WOC mode is stored as reference value once, as a result of a measurement. This measurement at "t=0"note1 is then the basis for comparison.
- The reference for acquisition (t) is always acquisition (t-1), in such a way that the INT/DRDY will only be set if the derivative of any component exceeds a threshold.

The in-application programmability is the same as for burst mode, but now the thresholds for setting the interrupt are also programmable by the user, as well as the reference, if the latter is data(t=0) or data(t-1) note1.

Note1:

WOC mode means when the device signal changes over threshold value, device interrupt pin will be pull-up high level and data output will be ready, or else device still keep in sleep mode. There are two modes signal changes in data comparison:

1) The sampling data of current time (t) compare with the first sampling data of WOC mode.

2) The sampling data of current time (t) compare with the data of last time (t=t-1)

3.3.5、 change operating mode

The user can change the operating mode at all time through a specific command on the bus. The default start-up mode is Single Measurement mode (in IDLE state), but with a proper user command any mode can be set after power-up. Changing to Burst or WOC mode, coming from Single Measure mode is always accompanied by a measurement first. The top-level state diagram indicating the different mode sand some relevant timing is shown below in this figure. In the Measure state, the MDATA flag will define which components will be measured (ZYXT). The sequential order can't be modified by the user.

Arrows indicated in grey are the direct result of a command to return to Single Measure mode. The main difference between STANDBY and WOC_IDLE is that in STANDBY mode, all analog

circuitry is ready to make a conversion, but this is accompanied by a larger current consumption. For burst mode this extra current consumption is justified because the emphasis is more on accurate timing intervals, avoiding the delay of T_{STBY} before conversion.

4. Overall Characteristics

4.1、 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Power supply voltage	VDD	2.2V	3.6V	V
I/O pins supply voltage	VDD_IO	1.71V	VDD	V
Operating temperature range	ТОР	-40	85	°C
Storage temperature range	TST	-50	125	°C
Electrostatic discharge	ESD_HBM		2	KV
protection: Human Body Model				
Electrostatic discharge	ESD_MM		N/A	V
protection: Machine Model				
Electrostatic discharge	ESD_CMD		750	V
protection: Charged Device				
Model			Y	

Note:

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

4.2、 Recommended operating conditions

Parameter	Remark	Symbol	Min.	Тур.	Max.	Unit
Operating		Та	-40	25	85	°C
temperature						
Power	VDD pin	VDD	2.2	3	3.6	V
supply	voltage					
voltage	VDD_IO	VDD_IO	1.65	1.8	VDD	V
	pin					
	voltage					

4.3、 Sensor Specification

All sensor specification parameter are specified VDD=3.0V,VDD_IO=3.0V and T=25 $^\circ\!\mathrm{C}$

Parameter	Remark	Min.	Тур.	Max.	Unit
Full Range	Each axis		\pm 48		Gauss

Non	\pm 48Gauss		0.1		% of FS
Linearity					
Sensitivity	X/Y axis		667		LSBs/Gauss
	Z axis		400		LSBs/Gauss
Magnetic	X/Y axis		1.5		mG/LSB
Resolution	Z axis		2.5		mG/LSB
T _{CONV}	Conversion time ^{Note1} :From IDLE	1		128	ms
	to data ready				
T _{STBY}	From IDLE to STBY		250		us
T _{ACTIVE}	From STBY to ACTIVE		8		us
T _{INTERVAL}	Time in between 2	20		5000	ms
	conversions(burst mode or				
	wake-up on change) ^{Note2}				

Note:

1: Standby current corresponds to the current consumed in the digital, where not the main oscillator is running which is used for analog sequencing, but only the low-power oscillator. This standby current is present in Burst mode and WOC mode; whenever the ASIC is counting down to start a new conversion.

2: Idle current is the current that is drawn by the ASIC in the IDLE mode, where it can only receive new commands on the communication bus, but all other blocks are disabled. The analog is disconnected, and only the digital IO part allows clocking of a few vital gates.

4.4、 Electrical Specification

The specifications are applicable at 25 $^{\circ}$ C, unless specified otherwise, and for the complete supply voltage range(VDD=2.2V to 3.6V,VDD_IO=1.65V to VDD).

Parameter	Remark	Min	Nom	Max	Unit
VDD	Analog Supply Voltage	2.2	3	3.6	V
VIO	Digital IO Supply	1.71	1.8	VDD	V
IDD,CONV	Conversion Current		2.35	2.6	mA
IDD,STBY	Standby Current(1)		40		μΑ
IDD,IDLE	Idle Current(2)		2	3	μΑ
IDD,NOM	Nominal Current (Data-rate = 10Hz, TCONV = 4ms)		280	320	μΑ

5 Serial interface

5.1、SPI protocol

The IC can handle SPI communication at a bit-rate of 10Mhz. The SPI communication is implemented in a half-duplex way, showing high similarities with I2C communication, but addressing through the CS (Chip Select) pin instead of through bus arbitration. The half-duplex nature is at the basis of the 3-wire or 4-wireSPI support.

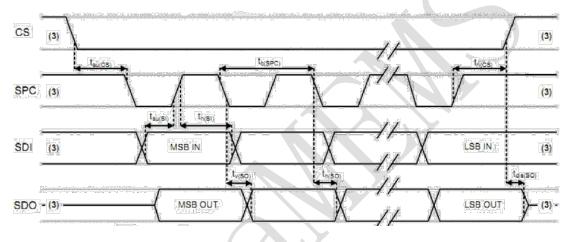
SPI Mode:

Mode	data changed on leading(trailing) edge	High(low) level is inactive
	and captured on trailing(leading) edge	state
0	CPHA =0	CPOL =0
1	CPHA =0	CPOL =1
2	CPHA =1	CPOL =0
3	CPHA =1	CPOL =1

The implemented SPI mode is mode 3: CPHA=1 (data changed on leading edge and captured on trailing edge , and CPOL=1 (high level is inactive state). The Chip Select line is active-low.

5.1.1、SPI slave timing values

Symbol	parameter	Value ^{note}		unit
		Min	Max	
tc(SPC)	SPI clock cycle	100		ns
fc(SPC)	SPI clock frequency		10	MHz
tsu(CS)	CS setup time	5		
th(CS)	CS hold time	10		
tsu(SI)	SDI input setup	5		
	time			
th(SI)	SDI input hold time	15		
tv(SO)	SDO valid output		50	ns
	time			
th(SO)	SDO output hold	5		


	time		
tdis(SO)	SDO output disable	50	
	time		

Note:

Values are guaranteed at 10 MHz clock frequency for SPI with both4 and 3 wires, based on characterization results, not tested in production.

5.1.2、SPI slave timing diagram ^{note}

The communication is also bundled in bytes, equally MSB first and MS Byte first.

Note:

Measurement points are done at 0.2*Vdd_IO and 0.8*Vdd_IO, for both input and output port

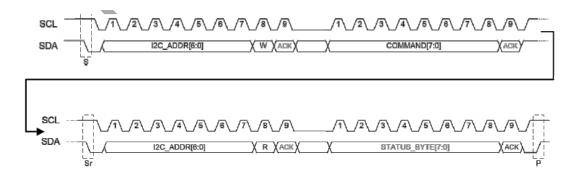
5.2、I2C protocol

5.2.1, I2C Address(slave address)

TheI2Caddressismadeupof some hard-coded bits and a memory written value as following:

- I2C_ADDR[6:0] ={EE_I2C_ADDR[4:0],A₁,A₀} with A_i the user-selectable active-high value of the input pads of the device, referred to the V_{DD}supplysystemandEE_I2C_ADDR[4:0] default programmed to 03h.
- When the R/W bit is set to "1", READ instruction is executed. When the R/W bit is set to "0", WRITE instruction is executed.
- If Ai pin is connected to VDD, Ai bit of slave address will be set"1"; and if Ai pin is connected to VSS, Ai bit of slave address will be set"0"

MSB					LSB
		42/	22		


0	0	0	1	1		A1		A0	R/W	
Command	EE_I2C_	ADDR[4:0]	A1	A0	R/\	N	12C_A	I2C_ADDR[6:0]+R/W		
Read	00011		0	1	1		0001	1011(1BH)		
Read	00011		0	0	1		0001	00011001(19H)		
Read	00011		1	1	1		0001	00011111(1FH)		
Read	00011		1	0	1		0001	00011101(1DH)		
Write	00011		0	1	0		0001	1010(1AH)		
Write	00011		0	0	0		0001	00011000(18H)		
Write	00011		1	1	0		00011110(1EH)			
Write	00011		1	0	0		00011100(1CH)			

5.2.2、I2C Principle

The device supports I2C communication in both standard mode and fast mode. Bytes are transmitted MSB first, and in order to reconstruct words, the bytes need to be concatenated MS Byte first. The general principle of communication is always the same:

- Initiating the communication is always done by the Master (Start condition S).
- Addressing the Slave (dm110) followed by a cleared bit to indicate the Master intends to write something to the specific addressed Slave.
- Acknowledging by the Slave if the transmitted address corresponds to the Slave's I2C address. If the latter isn't the case, any further activity on the bus except a Sr(Start Repeat) and P (Stop) condition will be ignored by the dm110.
- Sending a Command Byte by the Master, as depicted in I2C Figure. The Slave will always acknowledge this, even if it is an unrecognized command.
- Issuing a Start Repeat (Sr) condition by the Master in order to restart the addressing phase
- Addressing the Slave(dm110) followed by a set bit to indicate the Master intends to read something from the specific addressed Slave
- Acknowledging by the Slave if the transmitted address corresponds to the Slave's I2C address. If the latter isn't the case, any further activity on the bus except a Sr(Start Repeat) and P (Stop) condition will be ignored by the dm110
- Transmitting the Status Byte by the Slave, who is in control of the bus
- Acknowledging by the Master if the data is well received
- Generating a Stop condition(P) by the master

The Master controlled bus activity is shown in grey body, the Slave controlled bus activity is shown in black body. In case a command is longer than a single byte(see command list), the bytes are transmitted sequentially before generating the Start Repeat(Sr) condition.

The same applies to the Slave responses: following RR and RM commands, the Slave response is more than just the Status Byte. There as well, the data is partitioned in bytes that are transmitted sequentially by the slave. It is the Master's responsibility to issue enough clocking pulses to read back all the data. Finding out how many bytes is possible by decoding the Status Byte information, see Section Status Byte.

5.2.3、I2C slave timing values

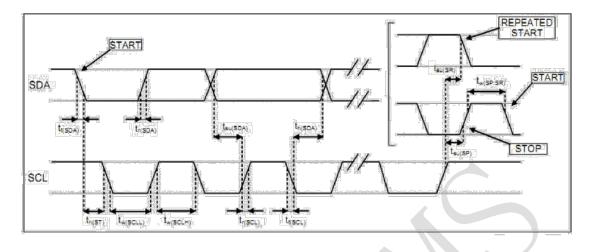

2 13 ⁻ 1977 - 123 16 - 1777 15		l ² C standar	rd mode ⁽¹⁾	I ² C fast n	node ⁽¹⁾	Unit
Symbol	Parameter	Min	Max	Min	Max	
	SCL clock frequency		100	1.0.19	400	kHz
tw(SCLL)	SCL clock low time	4.7	8	13		* 9 195 - 5-5 -5
(SCLH)	SCL clock high time	4.072	i B	0.6		- Jus
t _{su(SDA)}	SDA setup time	250		1003		(: ns -
(th(SDA)	SDA data hold time	0	3.45	fill.	0.9	, µs
tr(SDA) tr(SCL)	SDA and SCL rise time:		1000	20 + 0.1C _b ⁽²⁾	300.	ns
4(SDA) 4(SCL)	SDA and SCL fall time	<u>с</u>	300	20 + 0,1C _b ⁽²⁾	. 300	
t _{h(ST)}	START condition hold time	× //		0.6		
su(SR)	Repeated START condition 20 setup time 10	4.7		0.6		
(t _{su(SP)})	STOP condition setup time		2. Carlor	0.6		- U HS
W(SP SR)	Bus free time between STOP					8

Table 7. I²C slave timing values

Note:

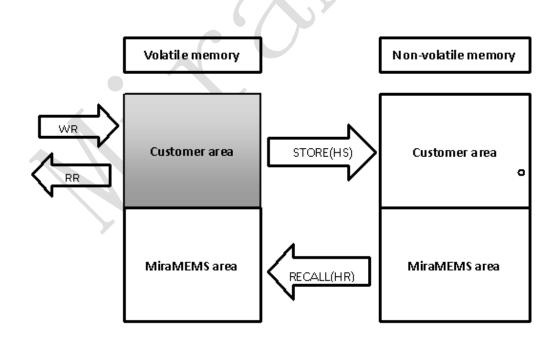
- 1. Data based on standard I2C protocol requirement, not tested in production.
- $2\,{\scriptstyle \smallsetminus}\,$ Cb=total capacitance of one bus line, in pF .

5.2.4、I2C slave timing diagram ^{note}

Note:

Measurement points are done at 0.2*Vdd_IO and 0.8*Vdd_IO, for both input and output port.

6、Memory Map


Thedm110has1kbitofnon-volatile memory, and the same amount of volatile memory. Each memory consists out of 64 addresses containing 16 bit words. The non-volatile memory has automatic 2-bit error detection and 1-bit error correction capabilities per address. The handling of such corrections & detections is explained in Section Status Byte.

The memory is split in 2 areas:

- Customer area: [address 0x00 to 0x1f]
- MiraMEMS area: [address 0x20 to 0x3f]

The RR and WR commands impact the volatile memory only, there no direct access possible to the non-volatile memory. The customer area of the volatile memory is bidirectionaccessible to the customer; the MiraMEMS area is write-protected. Only modifications in the grey area are allowed with the WR command. The adjustments in the customer area can be stored in the permanent non-volatile memory with the Memory Store command (HS), which copies the entire volatile memory including the MiraMEMS area to the non-volatile one. With the Memory Recall (HR) command the non-volatile memory content can be recalled to the volatile memory, which can restore any modifications due to prior WR commands. The HR step is performed automatically at start-up of the ASIC, either through cold reset or warm reset with the RT command.

The above is graphically shown in this figure.

The customer area houses 3 types of data:

- Analog configuration bits
- Digital configuration bits

Informative(free) bits

6.1、 Register Table

The latter can be filled with customer content freely, and covers the address span from (and including) 0x0Ah to 0x1Fh, a total of 352 bits. The memory mapping of volatile and non-volatile memory on address level is identical. The volatile memory map is given in this table.

						Bit Numbe	er								
Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
0x00		ANA_RESERVED_LOW BIST GAIN_SEL HALLCONF							ONF						
0x01	TRIG/INT	COMM	_MODE	WOC_DIFF	EXT_TRIG	TCMP_EN		BURST_	SET(zyxt)			BUR	ST_DA	TA_R/	ATE
0x02				OS	R2			RES_XY	z			D	IG_FIL	T	OSR
0x03				SENS_TC	_HT						SEN	s_тс_	LT		
0x04						OFFSET_2	x								
0x05						OFFSET_	Y								
0x06						OFFSET_	z								
0x07					V	VOXY_THRES	HOLD)	\mathbf{x}						
0x08					N	NOZ_THRESH	HOLD								
0x09						NOT_THRESH	HOLD	,							
0x0A						FREE									
0x0B						FREE									
0x0C						FREE									
0x0D						FREE									
0x0E						FREE									
0x0F						FREE									
0x10						FREE									
0x11					<u> </u>	FREE									
0x12					*	FREE									
0x13						FREE									
0x14						FREE									
0x15						FREE									
0x16						FREE									
0x17						FREE									
0x18						FREE									
0x19						FREE									
0x1A						FREE]
0x1B						FREE									
0x1C						FREE]
0x1D						FREE]
0x1E						FREE]
0x1F						FREE									

6.2 Register Description

The meaning of each customer accessible parameter is explained in this section. The customer area of both the volatile and the non-volatile memory can be written through standard SPI and I²C communication, within the application. No external high-voltages are needed to perform such operations, nor access to dedicated pins that need to be grounded in the application.

6.2.1 Register:0x00

MSB	yte:							
BIT1	5 BIT:	14 BIT	13 BIT	12 BIT1:	1 BIT10	BIT9	BIT8	
	ANA_RESERVED_LOW							
LSBy	LSByte:							
BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	
0	GAIN SEL[2]	GAIN SEL[1]	GAIN SEL[0]	HALLCONF[3]	HALLCONF[2]	HALLCONF[1]	HALLCONF[0]	

Register(0x00) description

ANA_RESERVED_LOW	Reserved IO trimming bits
	Enabled the on-chip coil, applying a Z-field [Built-In Self Test] ^{note1}
BIST	0: normal
	1: generate magnetic field for self-test
0	undefined bit
GAIN_SEL[2:0]	Analog chain gain setting, factor5 ^{note2} betweenminandmaxcode
HALLCONF[3:0]	Hall plate spinning rate adjustment

GAIN_SEL specify the gain of the analog chain (relative to GAIN_SEL=0)

GAIN_SEL<2:0>	Multiplication
0	1
1	1.25
2	1.66
3	2
4	2.5
5	3
6	3.75
7	5

Note:

1:When the BIST=1, Self test mode is enabled, in this mode we can detect magnetic output of Z axi s to acknowledge device status. Pls refer to application note to know how to detect device in self t est mode.

2:factor 5 is multiplication between GAIN_SEL=7(MAX) and GAIN_SEL=0(MIN).

6.2.2 Register:0x01

MSByte:

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
TRIG/INT	COMM_MODE[1]	COMM_MODE[0]	WOC_DIFF	EXT_TRIG	TCMP_EN	BURST_SET(zyxt)[z]	BURST_SET(zyxt)[y]

LSByte:

LJDyte.							
BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
BURST_SET	BURST_SET	BURST_DATA	BURST_DATA	BURST_DATA	BURST_DATA	BURST_DATA	BURST_DATA
(zyxt)[x]	(zyxt)[t]	_RATE[5]	_RATE[4]	_RATE[3]	_RATE[2]	_RATE[1]	_RATE[0]

Register(0x01) description

TRIG/INT	Puts TRIG_INT pin in TRIG mode when cleared, INT mode otherwise				
COMM_MODE[1:0]	Allow only SPI [10b], only I ² C [11b] or both [0Xb] according to CS pin				
	Sets the Wake-up On Change based on Δ {sample(t),sample(t-1)}				
	0: The sampling data of current time (t) compare with the first				
WOC_DIFF	sampling data of WOC mode.				
	1: The sampling data of current time (t) compare with the data of last				
	time (t=t-1)				
EXT_TRIG	Allows external trigger inputs when EXT_TRIG is set, if TRIG/INT = 0				
TCMP_EN	Enables on-chip sensitivity drift compensation				
BURST_DATARATE[6:0]	Defines TINTERVAL as BURST_DATA_RATE * 20ms				

To make sure the activity on the SPI bus can't be accidentally interpreted as I2C protocol, programming bits are available in the memory of the dm110 to select the protocol. It concerns the COMM_MODE [1:0] bits with the following effect:

COMM_MODE[1]	COMM_MODE[0]	Description
0	Х	The mode in which the first valid command is transmitted to the dm211 defines the operating mode (SPI or I ² C) for all its future commands, until a reset (hard or soft) is done.
1	0	SPI mode only
1	1	I ² C mode only

6.2.3 Register:0x02

MSByte:

BIT15	BIT14	IT14 BIT13 BIT12		BIT11	BIT10	BIT9	BIT8	
			OSR2[1]	OSR2[0]	RES_XYZ_Z[1]	RES_XYZ_Z[0]	RES_XYZ_Y[1]	

LSByte:

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
RES_XYZ_Y[0]	RES_XYZ_X[1]	RES_XYZ_X[0]	DIG_FI	DIG_FI DIG_FI		OSR[1]	OSR[0
			LT[2]	LT[1]	LT[0]]

Register(0x02) description

OSR2[1:0]	Temperature sensor ADC oversampling ratio							
RES XYZ[5:0]	Selectsthedesired16-bitoutput valuefromthe19-bitADC							
RES_ATZ[5.0]	Every direction(X/Y/Z) has its own 2-bit parameter							
DIG_FILT[2:0]	Digital filter applicable to ADC							
OSR[1:0]	Magnetic sensor ADC oversampling ratio							

RES_XYZ specify the resolution of the measurement:

The output of ADC is unsigned 19bits data. The output of the sensor would be 16bits which is selected from 19bits. Please refer to the table below:

Unsigned 16 bits sensor output(B_{OUT}):

RES_x/y/z<1:0>																			
0	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Change unsigned 16bits to signed 16bits:

RES_i	Unsigned 16bits	Signed 16bits
0	B _{OUT}	B _{OUT}
1	Воит	B _{OUT}
2	Воит	B _{OUT} -2 ¹⁵
3	Воит	B _{OUT} -2 ¹⁴

6.2.4、Register:0x03

MSByte:

	BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
	SENS_TC_H							
	T[7]	T[6]	T[5]	T[4]	T[3]	T[2]	T[1]	T[0]
_	ISByte							

LSByte:	
---------	--

,							
BIT7	BIT6	BIT6 BIT5		BIT3	BIT2	BIT1	BIT0
SENS_TC_LT							
[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]

Register(0x03) description

SENS_TC_HT[7:0]	Sensitivity drift compensation factor for T <t<sub>REF</t<sub>
-----------------	--

SENS_TC_LT[7:0] Sensitivity drift compensation factor for T>T_{REF}

6.2.5 Register:0x04

BIT1	BIT1	BIT1	BIT1	BIT1	BIT1	BIT									
5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
	OFFSET_X[15:0]														

Register(0x04) description

6.2.6 Register:0x05

BIT1	BIT1	BIT1	BIT1	BIT1	BIT1	BIT									
5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
OFFSET_Y[15:0]															

Register(0x05) description

OFFSET_Y[15:0] Constant Y-offset correction

6.2.7、Register:0x06

-															
BIT1	BIT1	BIT1	BIT1	BIT1	BIT1	BIT									
5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
OFFSET_Z[15:0]															

Register(0x06) description

OFFSET_Z[15:0] Constant Z-offset correction

6.2.8、Register:0x07

BIT1	BIT1	BIT1	BIT1	BIT1	BIT1	BIT									
5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
	WO_XY_THRESHOLD[15:0]														

Register(0x07) description

WO_XY_THRESHOLD[15:0] Wake-up On Change XY-threshold

6.2.9、Register:0x08

BIT1	BIT1	BIT1	BIT1	BIT1	BIT1	BIT									
5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
	WO_Z_THRESHOLD[15:0]														

Register(0x08) description

WO_Z_THRESHOLD[15:0] Wake	up On Change Z-threshold
---------------------------	--------------------------

6.2.10、 Register:0x09

BIT1	BIT1	BIT1	BIT1	BIT1	BIT1	BIT									
5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
WO_T_THRESHOLD[15:0]															

Register(0x09) description

WO_T_THRESHOLD[15:0] Wake-up On Change T-threshold	WO_T_THRESHOLD[15:0]
--	----------------------

7、Command List

Thedm110onlylistenstoaspecificsetofcommands.ApartfromtheResetcommand,allcommands generateastatusbytethatcanbereadout.Thetablebelowindicatesthe12differentcommandsthatare(c onditionally)acceptedbythedm110.

7.1、Command Table

Command											
Command Name	Symbol	CMD1 byte ⁽³⁾	CMD2 byte ⁽³⁾	CMD3 byte ⁽³⁾	CMD4 byte ⁽³⁾						
No Operation	NOP	0000 0000	N/A	N/A	N/A						
Start Burst Mode	SB	0001 zyxt ⁽¹⁾	N/A	N/A	N/A						
Start Wake-up on Change Mode	SW	0010 zyxt ⁽¹⁾	N/A	N/A	N/A						
Start Single Measurement Mode	SM	0011 zyxt ⁽¹⁾	N/A	N/A	N/A						
Read Measurement	RM	0100 zyxt ⁽¹⁾	N/A	N/A	N/A						
Read Register	RR	0101 0abc ⁽²⁾	{A5 A0 ,0,0}	N/A	N/A						
Write Register	WR	0110 0abc ⁽²⁾	D 15D8	D 7 D0	{A5 A0 ,0 ,0 }						
Exit Mode	EX	1000 0000	N/A	N/A	N/A						
Memory Recall	HR	1101 0000	N/A	N/A	N/A						
Memory Store	HS	1110 0000	N/A	N/A	N/A						
Reset	RT	1111 0000	N/A	N/A	N/A						

Note:

- 1. The argument in all mode-starting commands (SB/SW/SM) is a nibble specifying the conversions to be performed by the sensor in the following order «zyxt». For example, if only Y axis and temperature are to be measured in Single Measurement mode the correct command to be transmitted is 0x35h.
- 2. The argument for the volatile memory access commands (RR/WR) «abc» should be set to 0x0h, in order to get normal read-out and write of the memory.
- 3. CMD byte have to been sent before start repeat.

7.2、Status byte

The status byte is the first byte transmitted by the dm211 in response to a command issued by the master. It is composed of a fixed combination of informative bits:

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
BURST_MODE	WOC_MODE	SM_MODE	ERROR	SED	RS	D1	D0

MODE bits

These bits define in which mode the dm211 is currently set. Whenever a mode transition command is rejected, the first status byte after this command will have the expected mode

bit cleared, which serves as an indication that the command has been rejected, next to the ERROR bit. The SM_MODE flag can be the result of an SM command or from raising the TRIG pin when TRIG mode is enabled in the volatile memory of the dm211.

ERROR bit

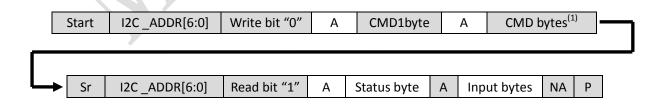
This bit is set in case a command has been rejected or in case an uncorrectable error is detected in the memory, a so called ECC_ERROR. A single error in the memory can be corrected (see SED bit), two errors can be detected and will generate the ECC_ERROR. In such a case all commands but the RT (Reset) command will be rejected.

SED bit

The single error detection bit simply flags that a bit error in the non-volatile memory has been corrected. It is purely informative and has no impact on the operation of the dm211.

RS bit

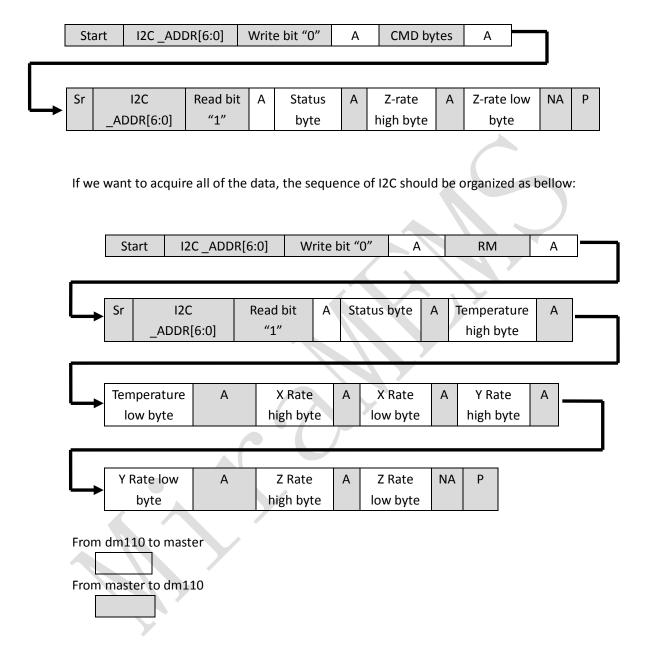
Whenever the dm211 gets out of a reset situation – both hard and soft reset – the RS flag is set to highlight this situation to the master in the first status byte that is read out. As soon as the first status byte is read, the flag is cleared until the next reset occurs.


D[1:0] bits

These bits only have a meaning after the RR and RM commands, when data is expected as a response from the dm211. The number of response bytes correspond to 2*D[1:0] + 2, so the expected byte counts are either 2, 4, 6 or 8.

7.3、 Command Usage:

All of the command usage should follow the sequence, each command has its own input and output bytes, output byte can be found in the command list table, only RR and RM has input bytes.


7.3.1 Example of command usage

7.3.2 Read measurement RM

The command read measurement can get the sensor rate while the dm110 set out a int

signal, generally speaking, the amounts of input bytes depends on the argument of <zyxt> in mode command, each bit represent two bytes of rate data, the RATA data order is fixed as temperature rate, rateX, rateY, rateZ. If we want's rateZ only, the sequence of I2C should follow the rule:

7.3.3 Read Register(RR)

The volatile memory data can be read out by the command of read register(RR). The command byte should be followed while the I2C writing address has been sent out. Before a restart of I2C protocol, the register address needed, then the register data will be received following a read I2C address.

Start	I2C_ADDR[6:0]	Write bit	А	CMD1byte(RR)	А	Register	А	
		"0"				address		

	Sr	I2C	Read	А	Status	А	Data high	А	Data low	NA	Ρ
-		_ADDR[6:0]	bit "1"		byte		byte		byte		

From dm110 to master

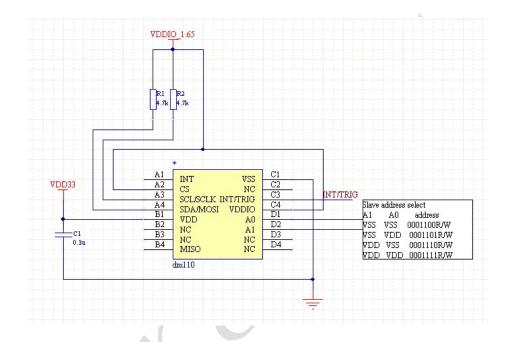
Fron	n master to	dm110

7.3.4 Other commands

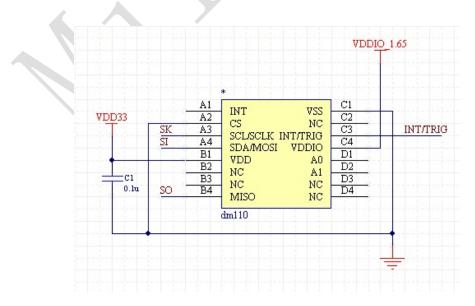
The usage of left commands is quite easy for they do not have input or output bytes, just follow the sequence bellow completely.

Start	I2C	Write	А	CMD1b	А	Sr	I2C	Read	А	Status	NA	Р
	_ADDR[6:0]	bit "0"		yte			_ADDR[6:0]	bit "1"		byte		

From dm110 to master

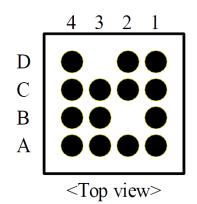

From master to dm110

8、Typical application


Recommended external electrical connection:

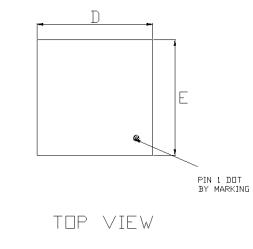
- I2C bus interface
- 4-wire SPI interface

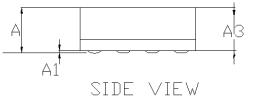
8.1、 I2C bus interface external connection

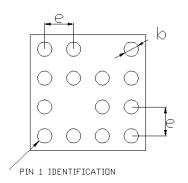


8.2、 4-wire SPI interface external connection

9、Package information


9.1、 Pin Assignment




TOP VIEW	4	3	2	1	
D	NC	NC	A1	AO	
С	VDDIO	INT/TRIG	NC	VSS	
В	MISO	NC	NC	VDD	
А	SDA/MOSI	SCL/SCLK	CS	INT	

9.2、 outline dimensions

dm110 Flip-BGA package

BOTTOM VIEW

COMMON DIMENSIONS(MM)						
PKG.	WVERYVERY THIN					
REF.	MIN.	NDM.	MAX			
A	0.79	0.84	0.89			
A1	0.1	0.13	0.15			
AG		0.71 REF.				
D	1.5	1.6	1.7			
E	1.5	1.6	1.7			
b		D 0.2 RE	F			
e	0.4 BSC					

10、Revision History

Data	Revision	Changes
2013-7-8	1.0	Initial release

$11_{\scriptscriptstyle N}$ Sales and support

Products supported by a preliminary data sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

AE: TEL: 86-512-65926260-8017 Website:www.miramems.com

PLEASE READ CAREFULLY

Information in this document is provided solely in connection with DM products. MiraMEMS reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.