阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

Small Signal MOSFET

60 V, 115 mA, N-Channel SOT-23

Features

- 2V Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable (2V7002L)
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

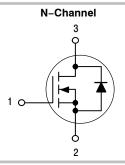
MAXIMUM RATINGS

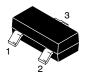
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	60	Vdc
Drain–Gate Voltage (R_{GS} = 1.0 MΩ)	V _{DGR}	60	Vdc
Drain Current - Continuous $T_C = 25^{\circ}C$ (Note 1) $T_C = 100^{\circ}C$ (Note 1) - Pulsed (Note 2)	I _D I _D	±115 ±75 ±800	mAdc
Gate-Source Voltage - Continuous - Non-repetitive (t _p ≤ 50 μs)	V _{GS} V _{GSM}	±20 ±40	Vdc Vpk

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 3) T _A = 25°C Derate above 25°C Thermal Resistance, Junction-to-Ambient	P_D	225 1.8 556	mW mW/°C °C/W
Total Device Dissipation (Note 4) Alumina Substrate, T _A = 25°C Derate above 25°C Thermal Resistance, Junction–to–Ambient	P _D	300 2.4 417	mW mW/°C °C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- The Power Dissipation of the package may result in a lower continuous drain current.
- 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.
- 3. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.
- 4. Alumina = 0.4 x 0.3 x 0.025 in 99.5% alumina.



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	7.5 Ω @ 10 V, 500 mA	115 mA

DIAGRAM

MARKING

702 M=

SOT-23 CASE 318 STYLE 21

> 702 = Device Code M = Date Code* ■ Pb-Free Package

(Note: Microdot may be in either location)
*Date Code orientation and/or position may
vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]		
2N7002LT1G	SOT-23	3000 Tape & Reel		
2N7002LT3G	(Pb-Free)	10,000 Tape & Reel		
2V7002LT1G		3000 Tape & Reel		
2V7002LT3G	SOT-23	10,000 Tape & Reel		
2N7002LT1H*	(Pb-Free)	3000 Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}Not for new design.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage ($V_{GS} = 0$, $I_D = 10 \mu Adc$)	V _{(BR)DSS}	60	-	-	Vdc	
Zero Gate Voltage Drain Current $T_J = 25^{\circ}C$ $(V_{GS} = 0, V_{DS} = 60 \text{ Vdc})$ $T_J = 125^{\circ}C$		-		1.0 500	μAdc	
Gate-Body Leakage Current, Forward (V _{GS} = 20 Vdc)	I _{GSSF}	_	-	100	nAdc	
Gate-Body Leakage Current, Reverse (V _{GS} = -20 Vdc)	I _{GSSR}	-	-	-100	nAdc	
ON CHARACTERISTICS (Note 5)						
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 250 μAdc)	V _{GS(th)}	1.0	-	2.5	Vdc	
On–State Drain Current $(V_{DS} \ge 2.0 V_{DS(on)}, V_{GS} = 10 \text{ Vdc})$	I _{D(on)}	500	-	_	mA	
Static Drain–Source On–State Voltage $(V_{GS} = 10 \text{ Vdc}, I_D = 500 \text{ mAdc})$ $(V_{GS} = 5.0 \text{ Vdc}, I_D = 50 \text{ mAdc})$	V _{DS(on)}	- -	- -	3.75 0.375	Vdc	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$;	- - -	- - - -	7.5 13.5 7.5 13.5	Ohms	
Forward Transconductance ($V_{DS} \ge 2.0 V_{DS(on)}$, $I_D = 200 \text{ mAdc}$)	9 _{FS}	80	-	_	mS	
DYNAMIC CHARACTERISTICS	Į.		I		1	
Input Capacitance (V _{DS} = 25 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	-	_	50	pF	
Output Capacitance (V _{DS} = 25 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{oss}	-	-	25	pF	
Reverse Transfer Capacitance (V _{DS} = 25 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	-	-	5.0	pF	
SWITCHING CHARACTERISTICS (Note 5)	<u>'</u>		1	•	•	
Turn–On Delay Time $(V_{DD} = 25 \text{ Vdc}, I_D \approx 500 \text{ mAdc},$	t _{d(on)}	-	-	20	ns	
Turn–Off Delay Time $R_G = 25 \Omega$, $R_L = 50 \Omega$, $V_{gen} = 10 V$)	t _{d(off)}	-	-	40	ns	
BODY-DRAIN DIODE RATINGS						
Diode Forward On-Voltage (I _S = 11.5 mAdc, V _{GS} = 0 V)	V _{SD}	_	-	-1.5	Vdc	
Source Current Continuous (Body Diode)	I _S	_	-	-115	mAdc	
Source Current Pulsed	I _{SM}	-	-	-800	mAdc	
	•					

^{5.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

TYPICAL ELECTRICAL CHARACTERISTICS

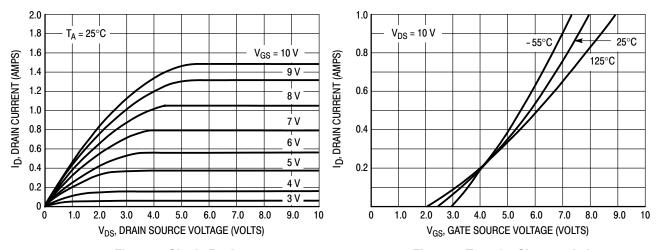


Figure 1. Ohmic Region

Figure 2. Transfer Characteristics

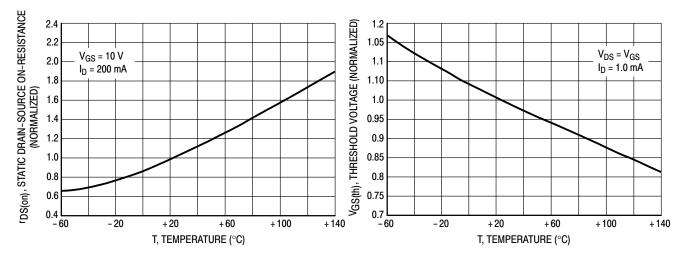
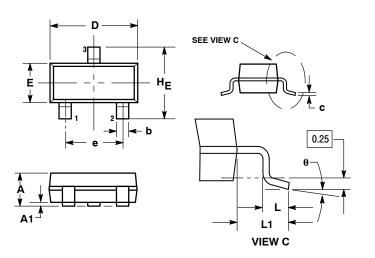
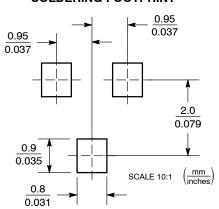



Figure 3. Temperature versus Static Drain-Source On-Resistance

Figure 4. Temperature versus Gate Threshold Voltage

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AP**


NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
С	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
HE	2.10	2.40	2.64	0.083	0.094	0.104
θ	0°		10°	0°		10°

STYLE 21:

- PIN 1. GATE SOURCE
 - 2. 3. DRAIN
- **SOLDERING FOOTPRINT**

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, tadefined to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

2N7002LT1 2N7002LT1G 2N7002LT3 2N7002LT3G 2V7002LT1G 2V7002LT3G