阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

Surface Mount

Monolithic Amplifier

DC-6 GHz

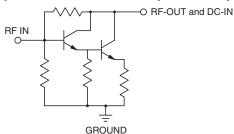
Product Features

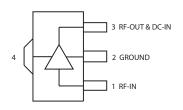
- High gain, 25.6 dB typ. at 100 MHz
- High IP3, 38 dBm typ.
- High Pout, P1dB 21.9 dBm typ.
- Internally Matched to 50 Ohms
- Transient Protected
- Excellent ESD Protection
- Unconditionally stable
- Aqueous washable
- Protected by US Patent 6,943,629

Typical Applications

- · Base station infrastructure
- Portable Wireless
- CATV & DBS
- MMDS & Wireless LAN

CASE STYLE: DF782


+RoHS Compliant


The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

Gali 84+ (RoHS compliant) is a wideband amplifier offering high dynamic range. Lead finish is SnAgNi. It has repeatable performance from lot to lot, and is enclosed in a SOT-89 package. It uses patented Transient Protected Darlington configuration and is fabricated using InGaP HBT technology. Expected MTBF is 1200 years at 85°C case temperature. Gali=84+ is designed to be rugged for ESD and supply switch-on transients.

simplified schematic and pin description

Function	Pin Number	Description
RF IN	1	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
RF-OUT and DC-IN	3	RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit".
GND	2,4	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collectively, "Standard Terms"): Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Electrical Specifications at 25°C and 100mA, unless noted

Desembles				Max	Linita	Code
Parameter		Min.	Тур.	Max.	Units	Cpk
Frequency Range*		DC		6	GHz	
Gain	f=0.1 GHz	24.3	25.6	26.9	dB	≥1.5
	f=1 GHz	_	22.7	_		
	f=2 GHz	18.2	19.2	20.2		
	f=3 GHz	_	16.7	_		
	f=4 GHz	14.3	15.0	15.8		
	f=6 GHz		11.8	_		
Magnitude of Gain Variation versus Temperature	f=0.1 GHz	_	0.0025	_	dB/°C	
(values are negative)	f=1 GHz	_	0.0036	_		
	f=2 GHz	_	0.0045	0.0090		
	f=3 GHz	_	0.0057	_		
	f=4 GHz	_	0.0074	_		
	f=6 GHz		0.0148	_		
Input Return Loss	f=0.1 GHz	_	25.8	_	dB	
	f=1 GHz	_	21.2	_		
	f=2 GHz	14.0	18.0	_		
	f=3 GHz	_	15.6	_		
	f=4 GHz	_	14.7	_		
	f=6 GHz	_	16.7	_		
Output Return Loss	f=0.1 GHz	_	16.3	_	dB	
	f=1 GHz	_	11.0	-		
	f=2 GHz	6.0	8.9	-		
	f=3 GHz	_	9.0	_		
	f=4 GHz	_	9.7	_		
	f=6 GHz	_	8.4	_		
Reverse Isolation	f=2 GHz	22	26.5		dB	
Output Power @1 dB compression	f=0.1 GHz	20.8	21.9	_	dBm	≥1.5
	f=1 GHz	20.4	21.5	_		
	f=2 GHz	20.1	21.2	_		
	f=3 GHz	_	20.9	_		
	f=4 GHz	_	19.2	_		
	f=6 GHz		15.5	_		
Saturated Output Power	f=0.1 GHz		23.0		dBm	
(at 3dB compression)	f=1 GHz		22.6			
	f=2 GHz		22.1			
	f=3 GHz		21.7			
	f=4 GHz		20.3			
	f=6 GHz		17.1			
Output IP3	f=0.1 GHz	33.8	37.6		dBm	≥1.5
	f=1 GHz	34.0	37.8	-		
	f=2 GHz	34.2	38.0	_		
	f=3 GHz	_	37.4	_		
	f=4 GHz	_	34.7	-		
	f=6 GHz		32.7	_		
Noise Figure	f=0.1 GHz		4.2		dBm	≥1.5
	f=1 GHz		4.4			
	f=2 GHz		4.4			
	f=3 GHz		4.4			
	f=4 GHz		4.6			
	f=6 GHz		5.3			
Group Delay	f=2 GHz		94		psec	
Recommended Device Operating Current			100		mA	
Device Operating Voltage		5.4	5.8	6.2	V	≥1.5
Device Voltage Variation vs. Temperature at 100mA			-3.6		mV/°C	
Device Voltage Variation vs Current at 25°C			3.3		mV/mA	
Thermal Resistance, junction-to-case ¹			64		°C/W	

^{*}Guaranteed specification DC-6 GHz. Low frequency cut off determined by external coupling capacitors.

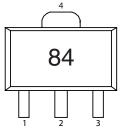
Absolute Maximum Ratings

Parameter	Ratings
Operating Temperature*	-45°C to 85°C
Storage Temperature	-65°C to 150°C
Operating Current	160mA
Power Dissipation	1W
Input Power	13 dBm

Note: Permanent damage may occur if any of these limits are exceeded. These ratings are not intended for continuous normal operation.

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and mentions the ender please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Wini-Circuits*


Wini-Circuits*

N. 11235 0003 (718) 034-4500 cales@minicircuits com.

¹Case is defined as ground leads.

^{*}Based on typical case temperature rise 9°C above ambient.

Product Marking

Markings in addition to model number designation may appear for internal quality control purposes.

Additional Detailed Technical Information

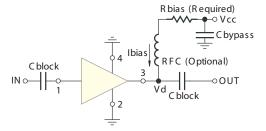
Additional information is available on our web site. To access this information enter the model number on our web site home page.

Performance data, graphs, s-parameter data set (.zip file)

Case Style: DF782

Plastic package, exposed paddle, lead finish: tin-silver over nickel

Tape & Reel: F55


7" reels with 20, 50, 100, 200, 500, 1K devices.

Suggested Layout for PCB Design: PL-019

Evaluation Board: TB-409-84+

Environmental Ratings: ENV08T2

Recommended Application Circuit

Test Board includes case, connectors, and components (in bold) soldered to PCB

R BIAS				
Vcc	"1%" Res. Values (ohms) for Optimum Biasing			
8	22.1			
9	32.4			
10	42.2			
11	52.3			
12	61.9			
13	71.5			
14	82.5			
15	93.1			
16	102			
17	113			
18	121			
19	133			
20	140			

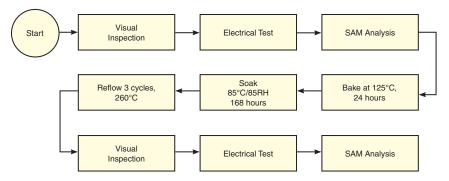
Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warrantly and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

ESD Rating

Human Body Model (HBM): Class 1C (1000v to < 2000v) in accordance with ANSI/ESD STM 5.1 - 2001


Machine Model (MM): Class M2 (< 100v) in accordance with ANSI/ESD STM 5.2 - 1999

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDECJ-STD-020C

No.	Test Required	Condition	Standard	Quantity
1	Visual Inspection	Low Power Microscope Magnification 40x	MIP-IN-0003 (MCT spec)	45 units
2	Electrical Test	Room Temperature	SCD (MCL spec)	45 units
3	SAM Analysis	Less than 10% growth in term of delamination	J-Std-020C (Jedec Standard)	45 units
4	Moisture Sensitivity Level 1	Bake at 125°C for 24 hours Soak at 85°C/85%RH for 168 hours Reflow 3 cycles at 260°C peak	J-Std-020C (Jedec Standard)	45 units

MSL Test Flow Chart

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp