

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

LINEAR INTEGRATED CIRCUIT

EARTH LEAKAGE CURRENT DETECTOR

DESCRIPTION

The UTC **M54123L** is a semiconductor integrated circuit with amplifier for a high-speed earth leakage circuit breaker.

For the amplifying parts of earth leakage circuit breaker, the UTC **M54123L** consists of differential amplifier, latch circuit and voltage regulator.

In normal operating, the UTC **M54123L** should be connected to the secondary side of the ZCT (zero current transformers). Here the ZCT detects leakage current different amplifiers' both input.

Then the signals which have been amplified are integrated by an external capacitor. The integrated signal connects to the input terminal of latch circuit whose output is suitable for the characteristics of high- speed earth leakage circuit breaker.

Until the input voltage reaches the fixed level, latch circuit doesn't become high. Then drives a thyristor which is connected to latch circuit's output terminal.

FEATURES

- * With good input sensitivity current temperature characteristics
- * High input sensitivity :V_T=6.1mV (Typ.)
- * Only need low external component count
- * High noise and surge-proof
- * Low power dissipation :P_D=5mW (Typ.)
- * May be used both as 100V and 200V.
- * Wide temperature range : from -20 °C to +80°C

ORDERING INFORMATION

Ordering Number			Deskere	Dealing	
Normal	Lead Free Plating	Halogen Free	Раскаде	Packing	
M54123L-S08-R	M54123LK-S08-R	M54123LG-S08-R	SOP-8	Tape Reel	
M54123L-D08-T	M54123LK-D08-T	M54123LG-D08-T	DIP-8	Tube	
M54123L-G08-T	M54123LK-G08-T	M54123LG-G08-T	SIP-8	Tube	

Lead-free: M54123LK Halogen-free: M54123LG

LINEAR INTEGRATED CIRCUIT

■ PIN CONFIGURATIONS

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V _R	Reference voltage terminal
2	IN	Input terminal
3	GND	Ground
4	OD	Differential amplifier output terminal
5	Sc	Latch input terminal
6	N _R	Terminal for noise absorption
7	Os	Output terminal
8	Vs	Supply voltage terminal

BLOCK DIAGRAM

PARA	AMETER	SYMBOL	RATINGS	
		UTINDOL .	TRATINGS	
Supply Current		IS	8	mA
	Between V _R -IN (Note 2)		250	mA
V _R Pin Current	Between V _R -GND	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mA	
	Between V _R -GND IVR 30 Between IN-V _R (Note 2) -250 Between IN-V _R (Note 2) 250 Between IN-GND I _{IN} 30	-250	mA	
IN Terminal Current	Between IN-V _R (Note 2)		250	mA
	Between IN-GND	$\begin{tabular}{ c c c c c c } \hline SYMBOL & RATINGS & UNI \\ \hline I_S & 8 & mA \\ \hline I_S & 250 & mA \\ \hline 250 & mA \\ \hline -250 & mA \\ \hline -250 & mA \\ \hline 250 & mA \\ \hline 0 & -250 & mA \\ \hline 0 & $	30	mA
	Between V _R -IN (Note 2)		mA	
S _C Terminal Current		I _{SC} 5		mA
Power Dissipation		PD	200	mW
Operating Temperature		T _{OPR} -20~ +80		°C
Storage Temperature		T _{STG}	-55~ +125	°C

■ ABSOLUTE MAXIMUM RATING (unless otherwise specified)

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Current value between V_R and IN, and between IN and V_R is less than 1ms in the pulse width, and duty cycle is less than 12%, In applying AC current continuously, it is 100 mA in the off-state.

■ **RECOMMENDED OPERATING CONDITIONS** (unless otherwise specified)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage When Latch Circuit Is Off-State	Vs	12			V
External Capacitor Between Vs and GND	C _{VS}	1			μF
External Capacitor Between Os and GND	Cos			1	μF

■ ELECTRICAL CHARACTERISTICS (Ta=-20~+80°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
	I _{S1}	$\frac{1}{12} - \frac{1}{12} $	Ta=-20°C			580	μA
Supply Current		(See Test Circuit 1)	Ta=25°C		400	530	μA
			Ta=80°C			480	μA
Trip Voltage	VT	V _S =16V, V _R -V _I , Ta=-20~+80°C		4	6.1	9	mVrms
	.,	(Note2) (See Test Cir	cuit 2)		0.1		
Timed Current1		Vs=16V, V _R -V _I =30mV, V _{OD} =1.2V, Ta=25°C		-12		-30	uΑ
	.101	(See Test Circuit 3)		12		00	μ
Timed Current2	I _{TD2}	V_{S} =16V, short circuit between V_{R} and V_{I} , V_{OD} =0.8V, Ta=25°C (See Test Circuit 4)		17		37	μA
	Io	V _{SC} =1.4V,V _{OS} =0.8V (See Test Circuit 5)	I _{S1} =580µA,Ta=-20°C	-200			μA
Output Current			I _{S1} =530µA,Ta=25°C	-100			μA
			I _{S1} =480µA,Ta=80°C	-75			μA
S _c "ON" Voltage (Note3)	V _{SC(ON)}	V _S =16V, Ta=25°C (Se	ee Test Circuit 6)	0.7		1.4	V
S _c Input Current	I _{SC(ON)}	V _s =12V, Ta=25°C (See Test Circuit 7)				5	μA
Output Low-Level Current	I _{OSL}	V _S =12V,V _{OSL} =0.2V, Ta=-20∼+80°C (See Test Circuit 8)		200			μA
Innut Clamp Valtage	VIC	V _S =12V, I _{IC} =20mA, Ta=-20~+80°C		4.3		6.7	V
		(See Test Circuit 9)					
Differential Input Clamp		I _{IDC} =100mA, Ta=-20~+80°C		0.4		2	V
Voltage	V IDC	(See Test Circuit 10)		0.4		2	v
Maximum Current Voltage	V _{SM}	I _{SM} =7mA, Ta=25°C (See Test Circuit 11)		20		28	V
Supply Current 2(Note 4)	I _{S2}	V _R -V _I , V _{OS} =0.6V, Ta=-20~+80°C				1100	uА
		(Note 5) (See Test Circuit 12)				1100	P*** 1
Latch Circuit is Off-State	V _{S(OFF)}	Ta=25°C (See Test Circuit 13)		0.5			V
Supply Voltage (Note6)	0(011)						
Operating Time (Note 7)	T _{ON}	$V_{\rm S}$ =16V, $V_{\rm R}$ -V _I =0.3V,	Ta=25°C	2		4	ms
		(See Test Circuit 14)					-

ELECTRICAL CHARACTERISTICS (Cont.)

- Notes: 1. Typical values are at Ta=25°C
 - 2. When standard value of voltage (60Hz) between V_R and V_I is minimum, and output O_S is low-level, or when standard value of voltage (60Hz) between V_R and V_I is maximum, and output O_S is high-level, it is considered as a good one.
 - 3. When standard value of voltage $V_{SC(ON)}$ is minimum, and output O_S is low-level, or when standard value of voltage $V_{SC(ON)}$ is maximum, and output O_S is high-level, it is considered as a good one.
 - 4. Supply current 2 is necessary to keep high in output O_S.
 - 5. After applying 30mV between V_R and V_I and shorting between them, it is considered as a good one if standard value of IGT flows out of output O_{S_L}
 - 6. After supply voltage applies 12V and output O_S is high-level, it is considered as a good one in the standard value of supply voltage and in the low-level of output O_S .
 - 7. Operating time is a time from applying fixed input till operating latch circuit in 0.047 μF between O_D and GND.

LINEAR INTEGRATED CIRCUIT

TEST CIRCUITS

TYPICAL APPLICATION CIRCUIT

High-Speed Leakage Circuit Breaker With UTC M54123L

Note: Gate current must be selected.

Please select voltage resistance by AC supply voltage

Note: The value of R1, R2, C4, and C5 should be chosen in order to keep at least 12V in Vs.

Please connect C4 (>1 μ F) and C2 (<1 μ F).

ZCT and load resistance R_L of ZCT are connected between input pin 1 and 2.

Protective resistance (R_P =100 Ω) must be insurted.

RL and amplifier's output (in Pin 4) regulates sensitivity current

External capacitor C1 between pin 4 and GND is used for noise removal.

Please connect a varistor or a diode (2 pcs.) to ZCT in parallel, because of when large current is grounded in the primary side (AC line) of ZCT, the following situation can be abandoned: The wave form in the secondary side of ZCT is distorted and some signals do not appear in the output of amplifier.

Please connect capacitor (about 0.047µF) between pin 6 and pin 7.

Capacitor C6 between pin 1 and GND is about 0.047µF for removing noise.

Operating Time vs. Input Voltage

UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw

TYPICAL CHARACTERISTICS

Vcc voltage generates by the constant voltage circuit in IC. This is measured not by M54123L but by a special element.

Bias Current vs. Ambient Temperature

Differential Amplifier Output Voltage, VoD

2.0

1.5

0.5

0

5

Ta=75°C

2^{5°}C

6

වි 1.0

Differential Input Voltage $riangle V_I = V_R - V_{IN} (mV)$

25°C

8

7

9

10

LINEAR INTEGRATED CIRCUIT

■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

