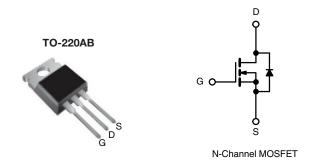
阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。


Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	500				
$R_{DS(on)}(\Omega)$	V _{GS} = 10 V 0.85				
Q _g max. (nC)	63				
Q _{gs} (nC)	9.3				
Q _{gd} (nC)	32				
Configuration	Single				

FEATURES

- Dynamic dV/dt rating
- · Repetitive avalanche rated
- · Fast switching
- · Ease of paralleling
- Simple drive requirements
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.

DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION			
Package	TO-220AB		
Lead (Pb)-free	IRF840PbF		
Lead (FD)-Iree	SiHF840-E3		
SnPb	IRF840		
SIPD	SiHF840		

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unles	s otherwis	se noted)		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			V_{DS}	500	V
Gate-Source Voltage			V_{GS}	± 20	V
Continuous Drain Current	V et 10 V	10 V $\frac{T_C = 25 \text{ °C}}{T_C = 100 \text{ °C}}$	I _D	8.0	
Continuous Drain Current	VGS at 10 V	_C = 100 °C		5.1	A
Pulsed Drain Current ^a			I _{DM}	32	
Linear Derating Factor				1.0	W/°C
Single Pulse Avalanche Energy b			E _{AS}	510	mJ
Repetitive Avalanche Current ^a			I _{AR}	8.0	А
Repetitive Avalanche Energy ^a			E _{AR}	13	mJ
Maximum Power Dissipation $T_C = 25 ^{\circ}C$			P_{D}	125	W
Peak Diode Recovery dV/dt ^c			dV/dt	3.5	V/ns
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +150	°C
Soldering Recommendations (Peak temperature) d for 10 s			_	300	°C
Mounting Toyour	6-32 or M3 screw			10	lbf ⋅ in
Mounting Torque				1.1	N⋅m

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD}=50$ V, starting $T_J=25$ °C, L=14 mH, $R_g=25$ Ω , $I_{AS}=8.0$ A (see fig. 12). c. $I_{SD}\leq 8.0$ A, $dI/dt\leq 100$ A/µs, $V_{DD}\leq V_{DS}$, $T_J\leq 150$ °C. d. 1.6 mm from case.

Vishay Siliconix

THERMAL RESISTANCE RATINGS						
PARAMETER	SYMBOL	TYP.	MAX.	UNIT		
Maximum Junction-to-Ambient	R _{thJA}	-	62			
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.50	-	°C/W		
Maximum Junction-to-Case (Drain)	R _{thJC}	-	1.0			

PARAMETER	SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	
Static		•			Į.		_
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		500	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	to 25 °C, I _D = 1 mA	-	0.78	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V$	' _{GS} , I _D = 250 μA	2.0	-	4.0	V
Gate-Source Leakage	I _{GSS}	V _G	$V_{GS} = \pm 20 \text{ V}$		-	± 100	nA
7 0		V _{DS} = 500 V, V _{GS} = 0 V		-	-	25	μΑ
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 400 V, \	V _{DS} = 400 V, V _{GS} = 0 V, T _J = 125 °C		-	250	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 4.8 A ^b	-	-	0.85	Ω
Forward Transconductance	9 _{fs}	V _{DS} = 5	0 V, I _D = 4.8 A ^b	4.9	-	-	S
Dynamic						•	
Input Capacitance	C _{iss}	V	$V_{GS} = 0 \text{ V},$	-	1300	-	pF
Output Capacitance	C _{oss}	V _I	_{DS} = 25 V,	-	310	-	
Reverse Transfer Capacitance	C _{rss}	f = 1.0	MHz, see fig. 5	-	120	-	
Total Gate Charge	Qg			-	-	63	nC
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V	$I_D = 8 \text{ A}, V_{DS} = 400 \text{ V},$ see fig. 6 and 13 b	-	-	9.3	
Gate-Drain Charge	Q _{gd}	7	See lig. 0 and 15	-	-	32	
Turn-On Delay Time	t _{d(on)}		V _{DD} = 250 V, I _D = 8 A		14	-	- ns
Rise Time	t _r	$V_{DD} = 3$			23	-	
Turn-Off Delay Time	t _{d(off)}	$R_g = 9.1 \Omega$, $R_D = 31 \Omega$, see fig. 10 b		-	49	-	
Fall Time	t _f			-	20	-	
Internal Drain Inductance	L _D	Between lead, 6 mm (0.25") fro	Between lead, 6 mm (0.25") from		4.5	-	-11
Internal Source Inductance	L _S	package and ce die contact	package and center of		7.5	-	- nH
Gate Input Resistance	R_g	f = 1 MHz, open drain		0.6	-	2.8	Ω
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	I _S	MOSFET symbol showing the		-	-	8.0	
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode		-	-	32	A
Body Diode Voltage	V_{SD}	T _J = 25 °C, I _S = 8 A, V _{GS} = 0 V b		-	-	2.0	V
Body Diode Reverse Recovery Time	t _{rr}	T 05 00 1			460	970	ns
Body Diode Reverse Recovery Charge	Q _{rr}	$T_J = 25 ^{\circ}\text{C}, I_F = 8 \text{A}, \text{dI/dt} = 100 \text{A/}\mu\text{s}^{\text{b}}$		-	4.2	8.9	μC
Forward Turn-On Time	t _{on}	Intrinsic turn	-on time is negligible (turr	on is do	minated b	y L _S and	L _D)

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width \leq 300 μ s; duty cycle \leq 2 %.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

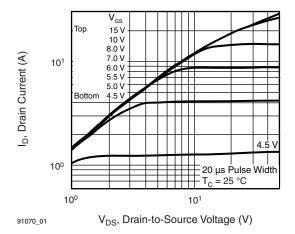


Fig. 1 - Typical Output Characteristics, T_C = 25 °C

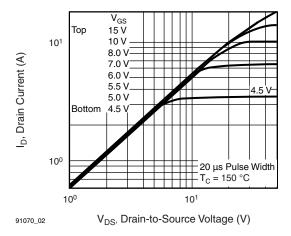


Fig. 2 - Typical Output Characteristics, T_C = 150 °C

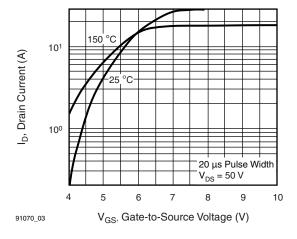


Fig. 3 - Typical Transfer Characteristics



Fig. 4 - Normalized On-Resistance vs. Temperature

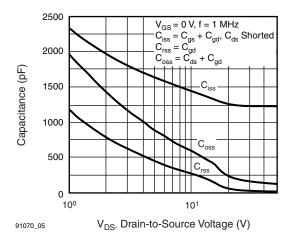


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

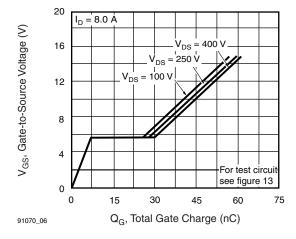


Fig. 6 - Typical Gate Charge vs. Drain-to-Source Voltage

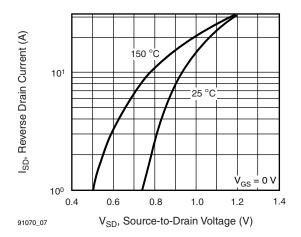


Fig. 7 - Typical Source-Drain Diode Forward Voltage

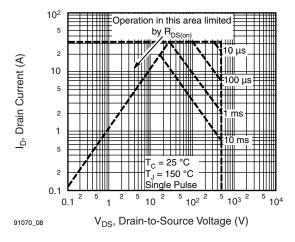


Fig. 8 - Maximum Safe Operating Area

S16-0754-Rev. D, 02-May-16

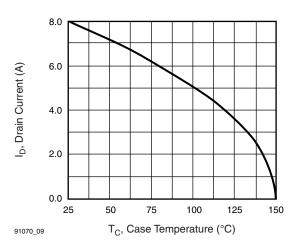


Fig. 9 - Maximum Drain Current vs. Case Temperature

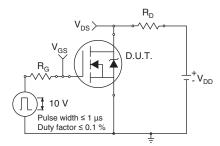


Fig. 10a - Switching Time Test Circuit

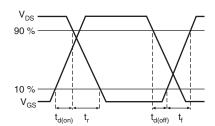


Fig. 10b - Switching Time Waveforms

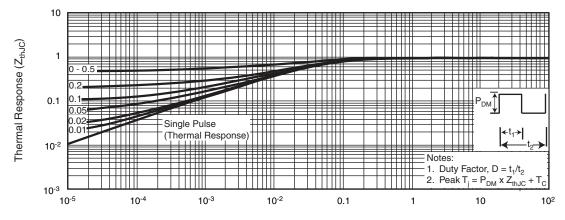
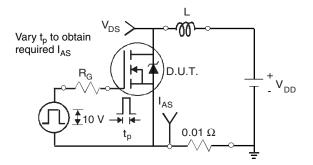
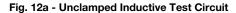




Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

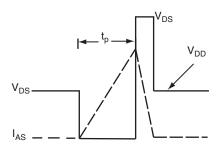


Fig. 12b - Unclamped Inductive Waveforms

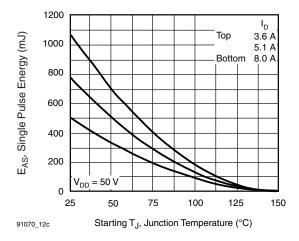


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

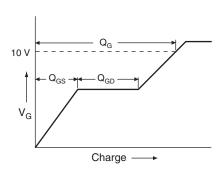


Fig. 13a - Basic Gate Charge Waveform

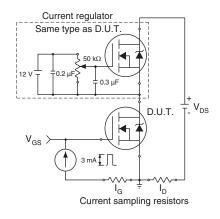
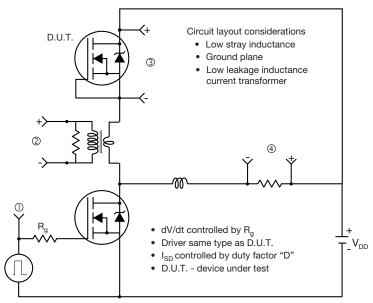



Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

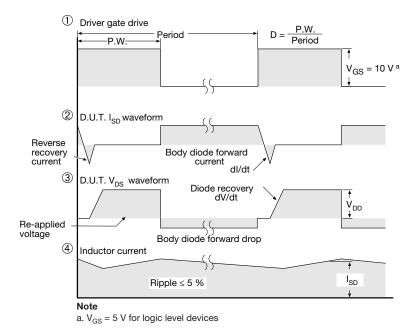
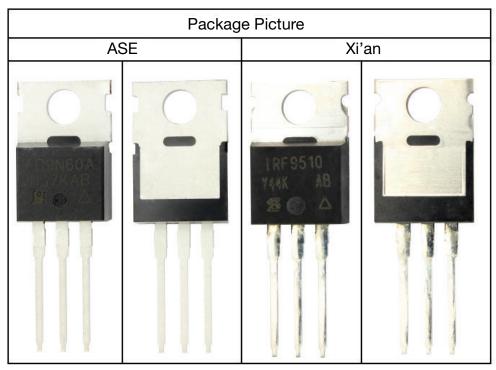



Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91070.


TO-220-1

DIM	MILLIN	IETERS	INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	4.24	4.65	0.167	0.183	
b	0.69	1.02	0.027	0.040	
b(1)	1.14	1.78	0.045	0.070	
С	0.36	0.61	0.014	0.024	
D	14.33	15.85	0.564	0.624	
E	9.96	10.52	0.392	0.414	
е	2.41	2.67	0.095	0.105	
e(1)	4.88	5.28	0.192	0.208	
F	1.14	1.40	0.045	0.055	
H(1)	6.10	6.71	0.240	0.264	
J(1)	2.41	2.92	0.095	0.115	
L	13.36	14.40	0.526	0.567	
L(1)	3.33	4.04	0.131	0.159	
ØР	3.53	3.94	0.139	0.155	
Q	2.54	3.00	0.100	0.118	
ECN: X15-0364-Rev. C, 14-Dec-15 DWG: 6031					

Note

 \bullet $M^{\star}=0.052$ inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

Revison: 14-Dec-15 1 Document Number: 66542

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.