阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

Features

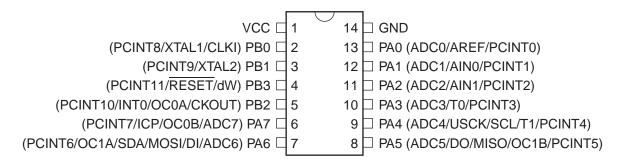
- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 120 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
- High Endurance, Non-Volatile Memory Segments
 - 2K/4K Bytes of In-System, Self-Programmable Flash Program Memory
 - Endurance: 10,000 Write/Erase Cycles
 - 128/256 Bytes of In-System Programmable EEPROM
 - Endurance: 100,000 Write/Erase Cycles
 - 128/256 Bytes of Internal SRAM
 - Data retention: 20 years at 85°C / 100 years at 25°C
 - Programming Lock for Self-Programming Flash & EEPROM Data Security
- Peripheral Features
 - One 8-Bit and One 16-Bit Timer/Counter with Two PWM Channels, Each
 - 10-bit ADC
 - 8 Single-Ended Channels
 - 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x)
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-Chip Analog Comparator
 - Universal Serial Interface
- Special Microcontroller Features
 - debugWIRE On-chip Debug System
 - In-System Programmable via SPI Port
 - Internal and External Interrupt Sources
 - Pin Change Interrupt on 12 Pins
 - Low Power Idle, ADC Noise Reduction, Standby and Power-Down Modes
 - Enhanced Power-on Reset Circuit
 - Programmable Brown-Out Detection Circuit with Software Disable Function
 - Internal Calibrated Oscillator
 - On-Chip Temperature Sensor
- I/O and Packages
 - Available in 20-Pin QFN/MLF & 14-Pin SOIC and PDIP
 - Twelve Programmable I/O Lines
- Operating Voltage:
 - 1.8 5.5V
- · Speed Grade:
 - 0 4 MHz @ 1.8 5.5V
 - 0 10 MHz @ 2.7 5.5V
 - 0 20 MHz @ 4.5 5.5V
- Industrial Temperature Range: -40°C to +85°C
- Low Power Consumption
 - Active Mode:
 - 210 µA at 1.8V and 1MHz
 - Idle Mode:
 - 33 μA at 1.8V and 1MHz
 - Power-Down Mode:
 - 0.1 μA at 1.8V and 25°C

8-bit **AVR**®
Microcontroller with 2K/4K
Bytes In-System
Programmable
Flash

ATtiny24A (Preliminary)

ATtiny44A

Summary


Rev. 8183AS-AVR-12/08

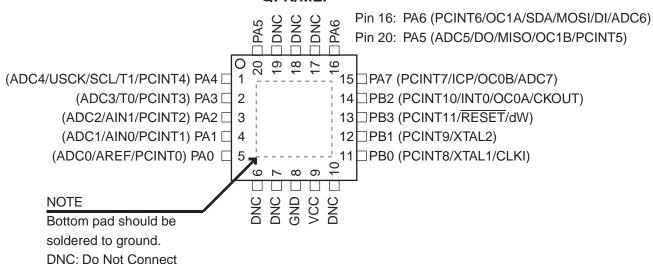

1. Pin Configurations

Figure 1-1. Pinout of ATtiny24A/44A

PDIP/SOIC

QFN/MLF

1.1 Pin Descriptions

1.1.1 VCC

Supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB3...PB0)

Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability except PB3 which has the RESET capability. To use pin PB3 as an I/O pin, instead of RESET pin, program ('0') RSTDISBL fuse. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny24A/44A as listed in Section 10.2 "Alternate Port Functions" on page 57.

1.1.4 RESET

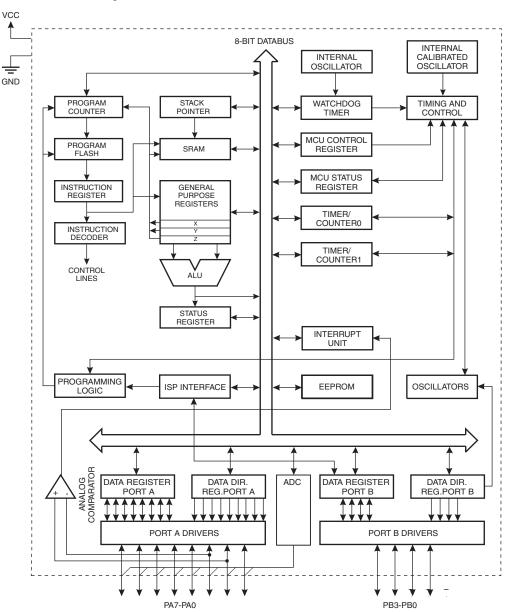
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 20-4 on page 176. Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) I/O pin.

1.1.5 Port A (PA7...PA0)

Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A has alternate functions as analog inputs for the ADC, analog comparator, timer/counter, SPI and pin change interrupt as described in "Alternate Port Functions" on page 57.



2. Overview

ATtiny24A/44A are low-power CMOS 8-bit microcontrollers based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny24A/44A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

ATtiny24A/44A

The ATtiny24A/44A provides the following features: 2K/4K byte of In-System Programmable Flash, 128/256 bytes EEPROM, 128/256 bytes SRAM, 12 general purpose I/O lines, 32 general purpose working registers, an 8-bit Timer/Counter with two PWM channels, a 16-bit timer/counter with two PWM channels, Internal and External Interrupts, a 8-channel 10-bit ADC, programmable gain stage (1x, 20x) for 12 differential ADC channel pairs, a programmable Watchdog Timer with internal oscillator, internal calibrated oscillator, and four software selectable power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. ADC Noise Reduction mode minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC. In Power-down mode registers keep their contents and all chip functions are disbaled until the next interrupt or hardware reset. In Standby mode, the crystal/resonator oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined with low power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The onchip ISP Flash allows the Program memory to be re-programmed in-system through an SPI serial interface, by a conventional non-volatile memory programmer or by an on-chip boot code running on the AVR core.

The ATtiny24A/44A AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits.

3. About

3.1 Resources

A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr.

3.2 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in the extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically, this means "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR". Note that not all AVR devices include an extended I/O map.

3.3 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

3.4 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device has been characterized.

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F (0x5F)	SREG	I	T	Н	S	V	N	Z	С	Page 8
0x3E (0x5E)	SPH	_	_	-	-	_	_	SP9	SP8	Page 10
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	Page 10
0x3C (0x5C)	OCR0B			Timer/	Counter0 - Outp	out Compare Re	gister B			Page 83
0x3B (0x5B)	GIMSK	_	INT0	PCIE1	PCIE0	_	_	_	_	Page 49
0x3A (0x5A	GIFR	_	INTF0	PCIF1	PCIF0	_	_	-	-	Page 50
0x39 (0x59)	TIMSK0	_	-	-	-	-	OCIE0B	OCIE0A	TOIE0	Page 83
0x38 (0x58)	TIFR0		-	-	-	-	OCF0B	OCF0A	TOV0	Page 83
0x37 (0x57)	SPMCSR	_	_	RSIG	СТРВ	RFLB	PGWRT	PGERS	SPMEN	Page 156
0x36 (0x56)	OCR0A		1			out Compare Re		T	T	Page 82
0x35 (0x55)	MCUCR	BODS	PUD	SE	SM1	SM0	BODSE	ISC01	ISC00	Pages 35, 49, and 65
0x34 (0x54)	MCUSR	-	- FOCOR	-	-	WDRF	BORF	EXTRF	PORF	Page 43
0x33 (0x53) 0x32 (0x52)	TCCR0B TCNT0	FOC0A	FOC0B	_		WGM02 Counter0	CS02	CS01	CS00	Page 81 Page 82
0x32 (0x52) 0x31 (0x51)	OSCCAL	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	Page 82 Page 29
0x30 (0x50)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	CALS	CALZ	WGM01	WGM00	Page 78
0x2F (0x4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	_		WGM11	WGM10	Page 106
0x2E (0x4E)	TCCR1B	ICNC1	ICES1	- CONTE	WGM13	WGM12	CS12	CS11	CS10	Page 108
0x2D (0x4D)	TCNT1H	101101	10201			nter Register Hig		0011	0010	Page 110
0x2C (0x4C)	TCNT1L					inter Register Lo	•			Page 110
0x2B (0x4B)	OCR1AH					are Register A F	,			Page 110
0x2A (0x4A)	OCR1AL					pare Register A L	<u> </u>			Page 110
0x29 (0x49)	OCR1BH					are Register B F	•			Page 110
0x28 (0x48)	OCR1BL			Timer/C	ounter1 - Comp	are Register B L	ow Byte			Page 110
0x27 (0x47)	DWDR				DWD	R[7:0]	-			Page 151
0x26 (0x46)	CLKPR	CLKPCE	_	-	_	CLKPS3	CLKPS2	CLKPS1	CLKPS0	Page 30
0x25 (0x45)	ICR1H			Timer/Co	ounter1 - Input C	apture Register	High Byte			Page 111
0x24 (0x44)	ICR1L			Timer/Co	ounter1 - Input C	apture Register	Low Byte			Page 111
0x23 (0x43)	GTCCR	TSM	_	-	-	-	-	-	PSR10	Page 114
0x22 (0x42)	TCCR1C	FOC1A	FOC1B	-	-	-	_	-	-	Page 109
0x21 (0x41)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	Page 43
0x20 (0x40)	PCMSK1	_	-	-	_	PCINT11	PCINT10	PCINT9	PCINT8	Page 50
0x1F (0x3F)	Reserved			-						
0x1E (0x3E)	EEARL	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	Page 20
0x1D (0x3D)	EEDR		_	EEDM4		ata Register	EEMBE	I FEDE	FEDE	Page 21
0x1C (0x3C) 0x1B (0x3B)	EECR PORTA	PORTA7	PORTA6	EEPM1 PORTA5	EEPM0 PORTA4	EERIE PORTA3	EEMPE PORTA2	EEPE PORTA1	PORTA0	Page 21
0x1B (0x3B) 0x1A (0x3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	Page 65 Page 65
0x19 (0x39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	Page 66
0x18 (0x38)	PORTB	F 11N/A/	- INAU	- FINAS	-	PORTB3	PORTB2	PORTB1	PORTB0	Page 66
0x17 (0x37)	DDRB	_	_	_	_	DDB3	DDB2	DDB1	DDB0	Page 66
0x16 (0x36)	PINB	_	_	_	_	PINB3	PINB2	PINB1	PINB0	Page 66
0x15 (0x35)	GPIOR2				General Purpos	se I/O Register 2		1	1	Page 22
0x14 (0x34)	GPIOR1					se I/O Register 1				Page 22
0x13 (0x33)	GPIOR0					se I/O Register 0				Page 22
0x12 (0x32)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	Page 51
0x11 (0x31))	Reserved					<u>. </u>				
0x10 (0x30)	USIBR				USI Buffe	er Register				Page 127
0x0F (0x2F)	USIDR					a Register				Page 123
0x0E (0x2E)	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	Page 128
0x0D (0x2D)	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICS0	USICLK	USITC	Page 128
0x0C (0x2C)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	Page 111
0x0B (0x2B)	TIFR1	-	_	ICF1	-	_	OCF1B	OCF1A	TOV1	Page 112
0x0A (0x2A)	Reserved					-				
0x09 (0x29)	Reserved					_				_
0x08 (0x28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	Page 129
0x07 (0x27)	ADMUX	REFS1	REFS0	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0	Page 144
0x06 (0x26)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	Page 146
0x05 (0x25)	ADCH		ADC Data Register High Byte					Page 148		
0x04 (0x24)	ADCE	DIM	4045			gister Low Byte	ADTCC	ADTC:	ADTCC	Page 148
0x03 (0x23)	ADCSRB	BIN	ACME	_	ADLAR	-	ADTS2	ADTS1	ADTS0	Page 130, Page 148
0x02 (0x22)	Reserved	AD075	ADCCD	ADOSD	ADC4D	ADCOD	ADOOD	ADO4D	ADCOD	Dage 424 Dage 446
0x01 (0x21)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	Page 131, Page 149
0x00 (0x20)	PRR	_	_	_	_	PRTIM1	PRTIM0	PRUSI	PRADC	Page 36

Note:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTIONS	8		1	
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd v Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF	None	1
BRANCH INSTRUCT	TIONS				
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
BIT AND BIT-TEST I			1	Т	T
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	I ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $(Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(z) ← R1:R0	None	
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INS	STRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/Timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

6. Ordering Information

6.1 ATtiny24A

Speed (MHz)	Power Supply	Ordering Code ⁽¹⁾	Package ⁽²⁾	Operational Range
20	1.8 - 5.5V	ATtiny24A-SSU ATtiny24A-PU ATtiny24A-MU ATtiny24A-MMH	14S1 14P3 20M1 20M2	Industrial (-40°C to 85°C)

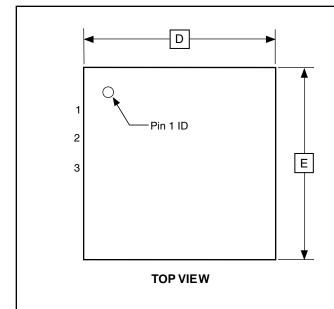
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

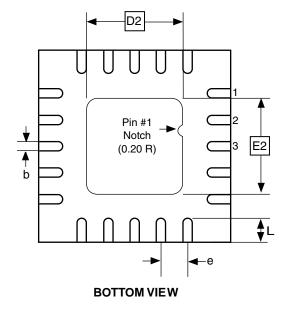
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type					
14S1	14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)				
14P3	14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				
20M1	20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No Lead / Micro Lead Frame Package (QFN/MLF)				
20M2	20-pad, 3 x 3 x 0.85 mm Body, Very Thin Quad Flat No Lead Package (VQFN)				

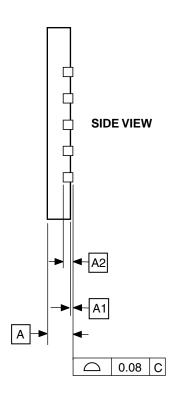
6.2 ATtiny44A

Speed (MHz)	Power Supply	Ordering Code ⁽¹⁾	Package ⁽²⁾	Operational Range
20	1.8 - 5.5V	ATtiny44A-SSU ATtiny44A-PU ATtiny44A-MU ATtiny44A-MMH	14S1 14P3 20M1 20M2	Industrial (-40°C to 85°C)

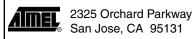

Notes:


- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type					
14S1 14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)					
14P3 14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)					
20M1	20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
20M2	20-pad, 3 x 3 x 0.85 mm Body, Very Thin Quad Flat No Lead Package (VQFN)				


7. Packaging Information

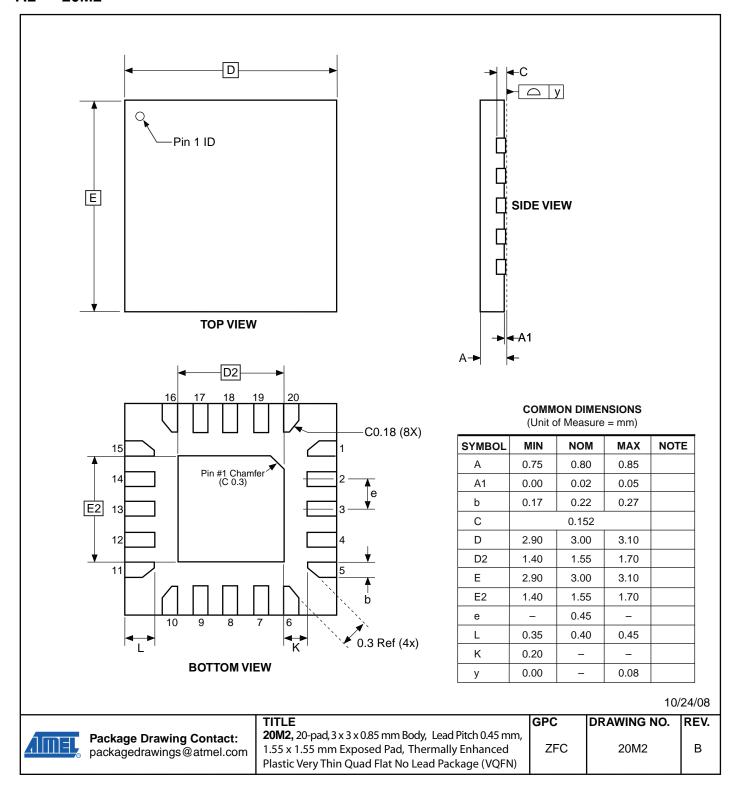
7.1 20M1


Note: Reference JEDEC Standard MO-220, Fig. 1 (SAW Singulation) WGGD-5.

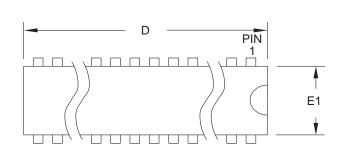
COMMON DIMENSIONS (Unit of Measure = mm)

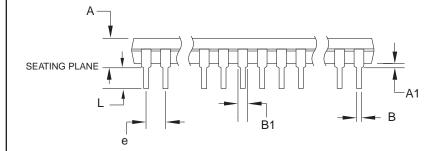
SYMBOL	MIN	NOM	MAX	NOTE	
Α	0.70	0.75	0.80		
A1	-	0.01	0.05		
A2		0.20 REF			
b	0.18	0.23	0.30		
D					
D2	2.45	2.60	2.75		
Е		4.00 BSC			
E2	2.45	2.60	2.75		
е					
L	0.35	0.40	0.55		

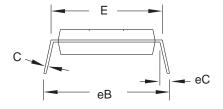
10/27/04


TITLE 20M1, 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm, 2.6 mm Exposed Pad, Micro Lead Frame Package (MLF)

DRAWING NO. REV. 20M1 A






7.2 20M2

7.3 14P3

- Notes: 1. This package conforms to JEDEC reference MS-001, Variation AA.
 - 2. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE		
Α	_	_	5.334			
A1	0.381	_	_			
D	18.669	_	19.685	Note 2		
E	7.620	_	8.255			
E1	6.096	_	7.112	Note 2		
В	0.356	_	0.559			
B1	1.143	_	1.778			
L	2.921	_	3.810			
С	0.203	-	0.356			
eB	_	_	10.922			
eC	0.000	_	1.524			
е						

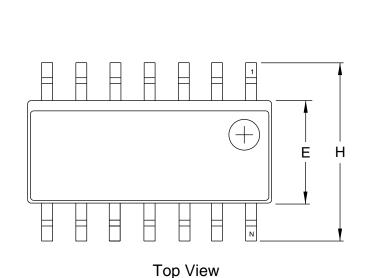
11/02/05

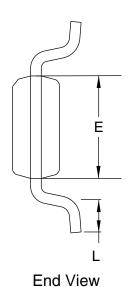
1 4	
	MEI
	(8)

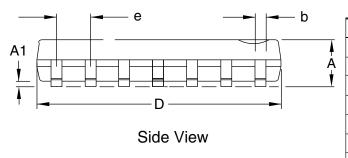
2325 Orchard Parkway San Jose, CA 95131

TITLE

 $\textbf{14P3},\, \textbf{14-lead} \,\, (0.300\text{"}/7.62 \,\, \text{mm Wide}) \,\, \text{Plastic Dual Inline Package} \,\, (\text{PDIP})$


DRAWING NO. REV.


14P3 Α


7.4 14S1

COMMON DIMENSIONS

(Unit of Measure = mm/inches)

SYMBOL	MIN	NOM	MAX	NOTE
Α	1.35/0.0532	-	1.75/0.0688	
A1	0.1/.0040	-	0.25/0.0098	
b	0.33/0.0130	-	0.5/0.02005	
D	8.55/0.3367	-	8.74/0.3444	2
E	3.8/0.1497	-	3.99/0.1574	3
Н	5.8/0.2284	-	6.19/0.2440	
L	0.41/0.0160	-	1.27/0.0500	4
е	1			

Notes:

- This drawing is for general information only; refer to JEDEC Drawing MS-012, Variation AB for additional information.
 Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006") per side.
- 3. Dimension E does not include inter-lead Flash or protrusion. Inter-lead flash and protrusions shall not exceed 0.25 mm (0.010") per side.
- 4. L is the length of the terminal for soldering to a substrate.
 5. The lead width B, as measured 0.36 mm (0.014") or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024") per side.

2/5/02

2325 Orchard Parkway San Jose, CA 95131

TITLE 14S1, 14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)

DRAWING NO. REV. 14S1 Α

8. Errata

The revision letters in this section refer to the revision of the corresponding ATtiny24A/44A device.

8.1 ATtiny24A

8.1.1 Rev. G

Not sampled.

8.1.2 Rev. F

Not sampled.

8.2 ATtiny44A

8.2.1 Rev. F

No known errata.

8.2.2 Rev. E

Not sampled.

9. Datasheet Revision History

9.1 Rev A. 12/08

- 1. Initial revision. Created from document 8006H.
- 2. Updated "Ordering Information" on page 17 and page 18. Pb-plated packages are no longer offered and there are no separate ordering codes for commercial operation range, the only available option now is industrial. Also, updated some order codes to reflect changes in leadframe composition and added VQFN package option.
- 3. Updated data sheet template.
- 4. Removed all references to 8K device.
- 5. Updated characteristic plots of section "Typical Characteristics", starting on page 182.
- 6. Added characteristic plots:
 - "Internal Bandgap Voltage vs. Supply Voltage" on page 202
 - "Internal Bandgap Voltage vs. Temperature" on page 202
- 7. Updated sections:
 - "Features" on page 1
 - "Power Reduction Register" on page 34
 - "Analog Comparator" on page 128
 - "Features" on page 132
 - "Operation" on page 133
 - "Starting a Conversion" on page 134
 - "ADC Voltage Reference" on page 139
 - "Speed Grades" on page 174
- 8. Updated Figures:
 - "Program Memory Map" on page 15
 - "Data Memory Map" on page 16
- 9. Update Tables:
 - "Device Signature Bytes" on page 161
 - "DC Characteristics. $T_A = -40$ °C to +85 °C" on page 173
 - "Additional Current Consumption for the different I/O modules (absolute values)" on page 182
 - "Additional Current Consumption (percentage) in Active and Idle mode" on page 183

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong

Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-

Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

avr@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.