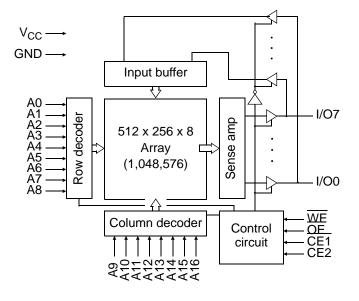
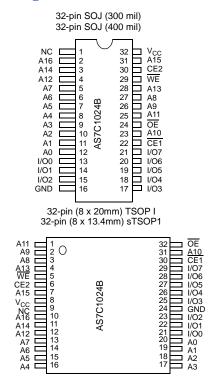
阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement


- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

Features


- Industrial and commercial temperatures
- Organization: 131,072 words x 8 bits
- High speed
 - 10/12/15/20 ns address access time
 - 5/6/7/8 ns output enable access time
- Low power consumption: ACTIVE
 - 605 mW / max @ 10 ns
- Low power consumption: STANDBY
 - 55 mW / max CMOS
- 6T 0.18u CMOS technology
- Easy memory expansion with $\overline{CE1}$, $\overline{CE2}$, \overline{OE} inputs
- TTL/LVTTL-compatible, three-state I/O
- 32-pin JEDEC standard packages

Logic block diagram

- 300 mil SOJ
- 400 mil SOJ
- 8 × 20mm TSOP 1
- 8 x 13.4mm sTSOP 1
- ESD protection \geq 2000 volts
- Latch-up current ≥ 200 mA

Pin arrangement

Selection guide

	-10	-12	-15	-20	Unit
Maximum address access time	10	12	15	20	ns
Maximum output enable access time	5	6	7	8	ns
Maximum Operating Current	110	100	90	80	mA
Maximum CMOS standby Current	10	10	10	10	mA

Functional description

The AS7C1024B is a high performance CMOS 1,048,576-bit Static Random Access Memory (SRAM) device organized as 131,072 words x 8 bits. It is designed for memory applications where fast data access, low power, and simple interfacing are desired.

Equal address access and cycle times (t_{AA}, t_{RC}, t_{WC}) of 10/12/15/20 ns with output enable access times (t_{OE}) of 5/6/7/8 ns are ideal for high performance applications. Active high and low chip enables $(\overline{CE1}, CE2)$ permit easy memory expansion with multiple-bank systems.

When $\overline{CE1}$ is high or CE2 is low, the devices enter standby mode. If inputs are still toggling, the device will consume I_{SB} power. If the bus is static, then full standby power is reached (I_{SB1}). For example, the AS7C1024B is guaranteed not to exceed 55 mW under nominal full standby conditions.

A write cycle is accomplished by asserting write enable (\overline{WE}) and both chip enables $(\overline{CE1}, CE2)$. Data on the input pins I/O0 through I/O7 is written on the rising edge of \overline{WE} (write cycle 1) or the active-to-inactive edge of $\overline{CE1}$ or $\overline{CE2}$ (write cycle 2). To avoid bus contention, external devices should drive I/O pins only after outputs have been disabled with output enable (\overline{OE}) or write enable (\overline{WE}) .

A read cycle is accomplished by asserting output enable (\overline{OE}) and both chip enables ($\overline{CE1}$, CE2), with write enable (\overline{WE}) high. The chips drive I/O pins with the data word referenced by the input address. When either chip enable is inactive, output enable is inactive, or write enable is active, output drivers stay in high-impedance mode.

Absolute maximum ratings

Parameter	Symbol	Min	Max	Unit
Voltage on V _{CC} relative to GND	V _{t1}	-0.50	+7.0	V
Voltage on any pin relative to GND	V _{t2}	-0.50	V _{CC} +0.50	V
Power dissipation	P_{D}	_	1.0	W
Storage temperature (plastic)	T _{stg}	-65	+150	°C
Ambient temperature with V _{CC} applied	T _{bias}	-55	+125	°C
DC current into outputs (low)	I _{OUT}	_	20	mA

Note: Stresses greater than those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Truth table

CE1	CE2	WE	OE	Data	Mode
Н	X	X	X	High Z	Standby (I _{SB} , I _{SB1})
X	L	X	X	High Z	Standby (I _{SB} , I _{SB1})
L	Н	Н	Н	High Z	Output disable (I _{CC})
L	Н	Н	L	D _{OUT}	Read (I _{CC})
L	Н	L	X	D _{IN}	Write (ICC)

Key: X = don't care, L = low, H = high

Recommended operating conditions

Parameter		Symbol	Min	Nominal	Max	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V	
Input Voltage	V _{IH}	2.2	-	$V_{CC} + 0.5$	V	
input voitage		$V_{ m IL}$	-0.5	_	0.8	V
Ambient operating	commercial	T_{A}	0	_	70	°C
temperature industrial		T_{A}	-40	_	85	°C

 V_{IL} min = -1.0V for pulse width less than 5ns

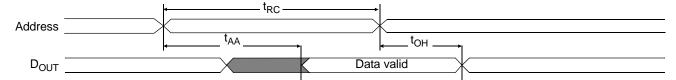
DC operating characteristics (over the operating range) I

			-1	10	-1	2	-1	15	-2	20	Unit
Parameter	Sym	Test conditions	Min	Max	Min	Max	Min	Max	Min	Max	CIII
Input leakage current	$ I_{LI} $	$V_{CC} = Max$, $V_{IN} = GND$ to V_{CC}	-	1	-	1	1	1	-	1	μΑ
Output leakage current	$ I_{LO} $	$V_{CC} = Max$, $\overline{CE1} = V_{IH}$ or $CE2 = V_{IL}$, $V_{OUT} = GND$ to V_{CC}	-	1	1	1	1	1	1	1	μΑ
Operating power supply current	I_{CC}	$V_{CC} = Max, \overline{CEI} \le V_{IL},$ $CE2 \ge V_{IH}, f = f_{Max},$ $I_{OUT} = 0 \text{ mA}$	-	110	I	100	I	90	I	80	mA
	I_{SB}	$V_{CC} = Max, \overline{CE1} \ge V_{IH} \text{ and/or}$ $CE2 \le V_{IL}, f = f_{Max}$	-	50	I	45	I	45	I	40	
Standby power supply current	I_{SB1}	$V_{CC} = \text{Max}, \overline{CE1} \ge V_{CC} - 0.2V$ $\text{and/or CE2} \le 0.2V$ $V_{IN} \le 0.2V \text{ or}$ $V_{IN} \ge V_{CC} - 0.2V, f = 0$	-	10	ı	10	1	10	ı	10	mA
Output voltage	V _{OL}	$I_{OL} = 8 \text{ mA}, V_{CC} = \text{Min}$	-	0.4	_	0.4	_	0.4	_	0.4	V
	V _{OH}	$I_{OH} = -4 \text{ mA}, V_{CC} = \text{Min}$	2.4	-	2.4	-	2.4	-	2.4	_	*

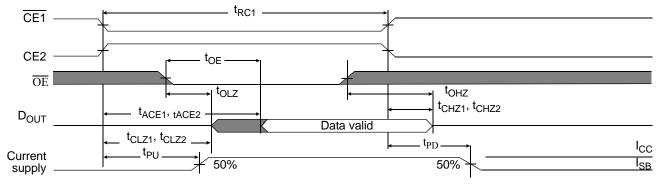
Capacitance (f = 1 MHz, T_a = 25 °C, V_{CC} = NOMINAL)²

Parameter	Symbol	Signals	Test conditions	Max	Unit
Input capacitance	C _{IN}	$A, \overline{CE1}, CE2, \overline{WE}, \overline{OE}$	$V_{IN} = 0V$	5	pF
I/O capacitance	C _{I/O}	I/O	$V_{IN} = V_{OUT} = 0V$	7	pF

 V_{IH} max = V_{CC} +2.0V for pulse width less than 5ns.

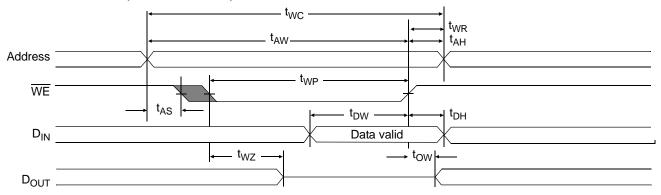

Read cycle (over the operating range)^{3,9,12}

		-1	10	-1	12	-1	15	-2	20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t_{RC}	10	-	12	_	15	_	20	_	ns	
Address access time	t _{AA}	-	10	_	12	_	15	_	20	ns	3
Chip enable (CE1) access time	t _{ACE1}	-	10	_	12	_	15	_	20	ns	3, 12
Chip enable (CE2) access time	t _{ACE2}	-	10	_	12	_	15	_	20	ns	3, 12
Output enable (OE) access time	t _{OE}	-	5	_	6	_	7	_	8	ns	
Output hold from address change	t _{OH}	3	-	3	_	3	_	3	_	ns	5
CE1 Low to output in low Z	t _{CLZ1}	3	-	3	_	3	_	3	_	ns	4, 5, 12
CE2 High to output in low Z	t_{CLZ2}	3	-	3	_	3	_	3	_	ns	4, 5, 12
CE1 Low to output in high Z	t _{CHZ1}	-	4	_	5	_	6	_	7	ns	4, 5, 12
CE2 Low to output in high Z	t_{CHZ2}	-	4	_	5	_	6	_	7	ns	4, 5, 12
OE Low to output in low Z	t _{OLZ}	0	-	0	_	0	_	0	_	ns	4, 5
OE High to output in high Z	t _{OHZ}	_	4	_	5	_	6	_	7	ns	4, 5
Power up time	t_{PU}	0	-	0	_	0	_	0	_	ns	4, 5, 12
Power down time	t_{PD}	_	10	_	12	_	15	_	20	ns	4, 5, 12

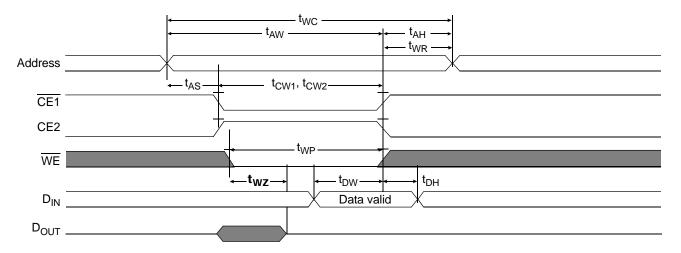

Key to switching waveforms

Read waveform 1 (address controlled)^{3,6,7,9,12}

Read waveform 2 (CE1, CE2, and OE controlled)^{3,6,8,9,12}



Write cycle (over the operating range) $^{II,\,I2}$


		-1	10	-	12	-1	15	-2	20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	t_{WC}	10	-	12	_	15	_	20	_	ns	
Chip enable $(\overline{CE1})$ to write end	t _{CW1}	8	-	9	_	10	_	12	_	ns	12
Chip enable (CE2) to write end	t_{CW2}	8	-	9	_	10	_	12	_	ns	12
Address setup to write end	t _{AW}	8	-	9	_	10	_	12	_	ns	
Address setup time	t _{AS}	0		0	_	0	_	0	_	ns	12
Write pulse width	t_{WP}	7		8	_	9	_	12	_	ns	
Write recovery time	t_{WR}	0	-	0	_	0	_	0	_	ns	
Address hold from end of write	t _{AH}	0	-	0	_	0	_	0	_	ns	
Data valid to write end	t_{DW}	5		6	_	8	_	10	_	ns	
Data hold time	t _{DH}	0		0	_	0	_	0	_	ns	4, 5
Write enable to output in high Z	t_{WZ}	-	5	-	6	_	7	-	8	ns	4, 5
Output active from write end	t _{OW}	1	-	1	-	1	_	2	_	ns	4, 5

Write waveform 1 ($\overline{\text{WE}}$ controlled)^{10,11,12}

Write waveform 2 (CE1 and CE2 controlled)^{10,11,12}

AC test conditions

- Output load: see Figure B.
- Input pulse level: GND to 3.5V. See Figure A.
- Input rise and fall times: 2 ns. See Figure A.
- Input and output timing reference levels: 1.5V. Thevenin equivalent: 480Ω 168Ω 10% 10% 2 ns 10% 2 ns 10% 2 ns 10% 2 ns 10%

Figure B: 5V Output load

Notes

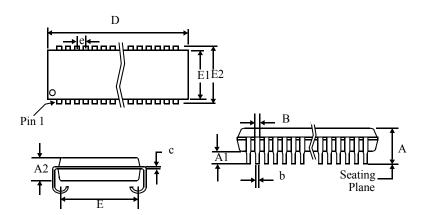
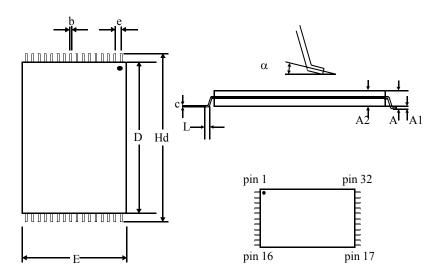

- 1 During V_{CC} power-up, a pull-up resistor to V_{CC} on $\overline{CE1}$ is required to meet I_{SB} specification.
- 2 This parameter is sampled and not 100% tested.
- 3 For test conditions, see AC Test Conditions, Figures A and B.

Figure A: Input pulse


- t_{CLZ} and t_{CHZ} are specified with CL = 5pF, as in Figure C. Transition is measured ± 500 mV from steady-state voltage.
- 5 This parameter is guaranteed, but not 100% tested.
- 6 WE is high for read cycle.
- 7 $\overline{\text{CE1}}$ and $\overline{\text{OE}}$ are low and CE2 is high for read cycle.
- 8 Address valid prior to or coincident with CE1 transition Low.
- 9 All read cycle timings are referenced from the last valid address to the first transitioning address.
- 10 N/A
- 11 All write cycle timings are referenced from the last valid address to the first transitioning address.
- 12 <u>CE1</u> and CE2 have identical timing.
- 13 C = 30 pF, except all high Z and low Z parameters where C = 5 pF.

Package dimensions

	32-pin S		32-pin SOJ 400 mil			
	Min	Max	Min	Max		
A	0.128	0.145	0.132	0.146		
A1	0.025	-	0.025	-		
A2	0.095	0.105	0.105	0.115		
В	0.026	0.032	0.026	0.032		
b	0.016	0.020	0.015	0.020		
c	0.007	0.010	0.007	0.013		
D	0.820	0.830	0.820	0.830		
Е	0.255	0.275	0.354	0.378		
E1	0.295	0.305	0.395	0.405		
E2	0.330	0.340	0.435	0.445		
e	0.050	BSC	0.050	BSC		

	32-pin TSOP 8×20 mm								
	Min	Max							
Α	_	1.20							
A1	0.05	0.15							
A2	0.95	1.05							
b	0.17	0.27							
С	0.10	0.21							
D	18.30	18.50							
e	0.50 ne	ominal							
Е	7.90	8.10							
Hd	19.80	20.20							
L	0.50	0.70							
α	0°	5°							

3/26/04, v 1.2

Ordering codes

Package \ Access time	Temp	10 ns	12 ns	15 ns	20 ns
Plastic SOJ, 300 mil	commercial	AS7C1024B-10TJC	AS7C1024B-12TJC	AS7C1024B-15TJC	AS7C1024B-20TJC
Trastic 503, 500 mm	industrial	_	AS7C1024B-12TJI	AS7C1024B-15TJI	AS7C1024B-20TJI
Plastic SOJ, 400 mil	commercial	AS7C1024B-10JC	AS7C1024B-12JC	AS7C1024B-15JC	AS7C1024B-20JC
1 lastic 303, 400 lilli	industrial	_	AS7C1024B-12JI	AS7C1024B-15JI	AS7C1024B-20JI
TSOP1 8×20 mm	commercial	AS7C1024B-10TC	AS7C1024B-12TC	AS7C1024B-15TC	AS7C1024B-20TC
150116~2011111	-				
sTSOP1	commercial	AS7C1024B-10STC	AS7C1024B-12STC	AS7C1024B-15STC	AS7C1024B-20STC
8 x 13.4mm	industrial	_	AS7C1024B-12STI	AS7C1024B-15STI	AS7C1024B-20STI

Note: Add suffix 'N' to the above part number for LEAD FREE PARTS (Ex: AS7C1024B-10TCN)

Part numbering system

AS7C	1024B	–XX	X	X	X
SRAM prefix	Device number	Access time	Package:T = TSOP1 8×20 mm ST = sTSOP1 8 x 13.4 mm J = SOJ 400 mil TJ = SOJ 300 mil	Temperature range C = Commercial, 0° C to 70° C I = Industrial, -40° C to 85° C	N = LEAD FREE PART

Alliance Memory, Inc. 511 Taylor Way, San Carlos, CA 94070 Tel: 650-610-6800 Fax: 650-620-9211

www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved Part Number: AS7C1024B Document Version: v. 1.2

© Copyright 2003 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that