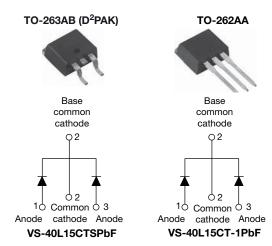
阅读申明

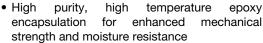
- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement


- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

www.vishay.com

Vishay Semiconductors


High Performance Schottky Rectifier, 2 x 20 A

PRODUCT SUMMARY	PRODUCT SUMMARY					
I _{F(AV)}	2 x 20 A					
V_{R}	15 V					
V _F at I _F	see datasheet					
I _{RM} max.	600 mA at 100 °C					
T_J max.	125 °C					
E _{AS}	10 mJ					
Package	TO-263AB (D ² PAK), TO-262AA					
Diode variation	Common cathode					

FEATURES

- 125 °C T_J operation (V_R < 5 V)
- Center tap module
- · Optimized for OR-ing applications
- Ultralow forward voltage drop
- High frequency operation

- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The center tap Schottky rectifier module has been optimized for ultralow forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

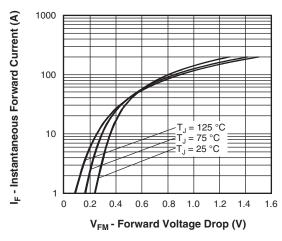
MAJOR RATINGS A	MAJOR RATINGS AND CHARACTERISTICS				
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{F(AV)}	Rectangular waveform	40	А		
V_{RRM}		15	V		
I _{FSM}	t _p = 5 μs sine	700	Α		
V _F	19 A _{pk} , T _J = 125 °C (per leg, typical)	0.25	V		
T _J		-55 to +125	°C		

VOLTAGE RATINGS					
PARAMETER SYMBOL TEST CONDITIONS VS-40L15CTSPbF VS-40L15CT-1PbF UNITS					
Maximum DC reverse voltage	V_{R}	T _{.1} = 100 °C	15	V	
Maximum working peak reverse voltage	V_{RWM}	1J = 100 C	15	V	

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		SYMBOL	TEST COND	ITIONS	VALUES	UNITS
Maximum average forward per leg		I			20	
current, see fig. 5	per device	I _{F(AV)}	50 % duty cycle at T _C = 85 °C, rectangular waveform		40	А
Maximum peak one cycle nor	Maximum peak one cycle non-repetitive		5 μs sine or 3 μs rect. pulse	Following any rated load	700	
surge current per leg, see fig. 7		I _{FSM}	10 ms sine or 6 ms rect. pulse	condition and with rated V _{RRM} applied	330	
Non-repetitive avalanche ene	rgy per leg	E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 2 A, L = 6 \text{mH}$		10	mJ
Repetitive avalanche current	per leg	I _{AR}	Current decaying linearly to zero Frequency limited by T _J maximu	in 1 μs m V _A = 1.5 x V _R typical	2	Α

VS-40L15CTSPbF, VS-40L15CT-1PbF

Vishay Semiconductors


ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CO	NDITIONS	TYP.	MAX.	UNITS
		19 A	T _{.1} = 25 °C	-	0.41	
Maximum forward voltage drop per leg See fig. 1	V _{FM} ⁽¹⁾	40 A	1j = 25 C	-	0.52	V
	VFM (1)	19 A	T 105 °C	0.25	0.33	V
		40 A	T _J = 125 °C	0.37	0.50	
Reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C		-	10	mA
See fig. 2		T _J = 100 °C	V _R = Rated V _R	-	600	
Threshold voltage	V _{F(TO)}	T T manyimum		0.1	182	V
Forward slope resistance	r _t	$T_J = T_J$ maximum		7	.6	mΩ
Maximum junction capacitance per leg	C _T	V _R = 5 V _{DC} (test signal range	ge 100 kHz to 1 MHz), 25 °C	-	2000	pF
Typical series inductance per leg	L _S	Measured lead to lead 5 mm from package body 8			-	nH
Maximum voltage rate of change	dV/dt	Rated V _R		10	000	V/µs

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHA	NICAL SI	PECIFICA	ATIONS		
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction temperat	ure range	T_J		-55 to +125	°C
Maximum storage temperat	ure range	T _{Stg}		-55 to +150	C
Maximum thermal resistance, junction to case per leg		R _{thJC}	DC operation See fig. 4	1.5	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	and greased 0.50	
Maximum thermal resistance, junction to ambient		R _{thJA}	DC operation	40	
Approximate weight				2	g
Approximate weight				0.07	oz.
Mounting torque minimum maximum			Non-lubricated threads	6 (5)	kgf · cm
			Non-lubricated tilleads	12 (10)	(lbf · in)
Marking daviso	Maddan da tan		Case style TO-263AB (D ² PAK)	40L1	5CTS
Marking device			Case style TO-262AA	40L1	SCT-1

Vishay Semiconductors

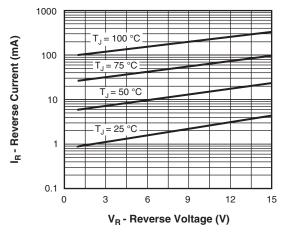


Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

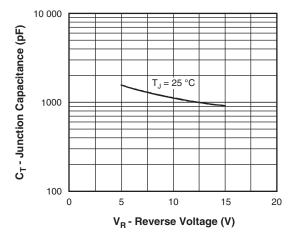


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

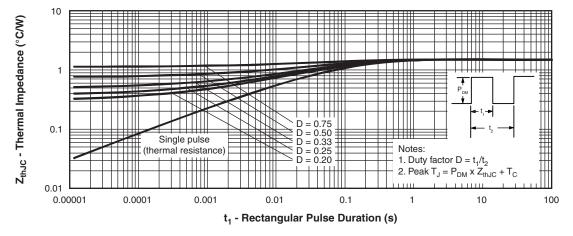


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

www.vishay.com

Vishay Semiconductors

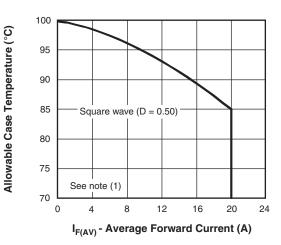


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

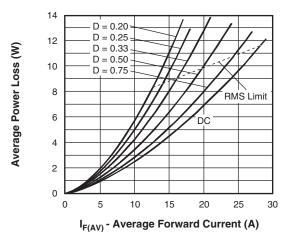


Fig. 6 - Forward Power Loss Characteristics

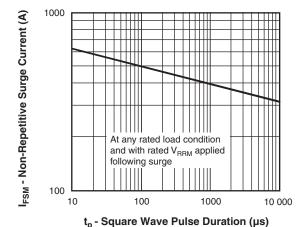


Fig. 7 - Maximum Non-Repetitive Surge Current

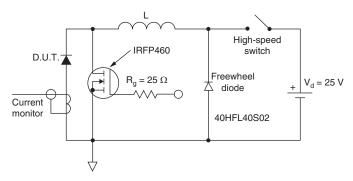
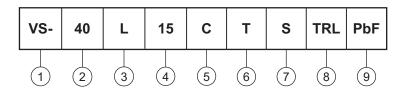


Fig. 8 - Unclamped Inductive Test Circuit

Note


 $^{(1)}$ Formula used: T_C = T_J - (Pd + Pd_{REV}) x R_{thJC}; Pd = Forward power loss = I_{F(AV)} x V_{FM} at (I_{F(AV)}/D) (see fig. 6); Pd_{REV} = Inverse power loss = V_{R1} x I_R (1 - D); I_R at V_{R1} = 80 % rated V_R

VS-40L15CTSPbF, VS-40L15CT-1PbF

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating (40 A)

L = Schottky "L" series

Voltage rating (15 V)

- C = common cathode

6 - T = TO-220

7 - • S = D²PAK

• -1 = TO-262

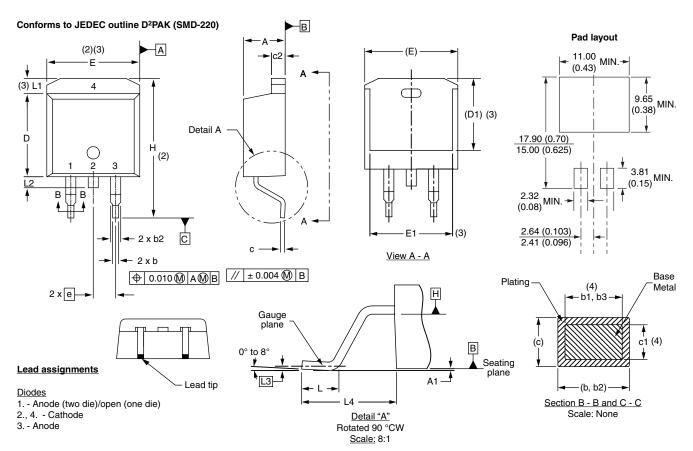
8 - • None = tube

• TRL = tape and reel (left oriented - for D²PAK only)

• TRR = tape and reel (right oriented - for D²PAK only)

9 - PbF = lead (Pb)-free

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-40L15CTSPbF	50	1000	Antistatic plastic tubes			
VS-40L15CTSTRRPbF	800	800	13" diameter plastic tape and reel			
VS-40L15CTSTRLPbF	800	800	13" diameter plastic tape and reel			
VS-40L15CT-1PbF	50	1000	Antistatic plastic tubes			


LINKS TO RELATED DOCUMENTS				
Dimensions	TO-263AB (D ² PAK)	www.vishay.com/doc?95046		
Differsions	TO-262AA	www.vishay.com/doc?95419		
Part marking information		www.vishay.com/doc?95008		
Packaging information		www.vishay.com/doc?95032		

Vishay High Power Products

D²PAK, **TO-262**

DIMENSIONS FOR D²PAK in millimeters and inches

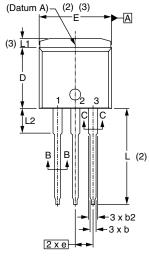
CVMDOL	MILLIM	IETERS	INC	INCHES	
SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.06	4.83	0.160	0.190	
A1	0.00	0.254	0.000	0.010	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2

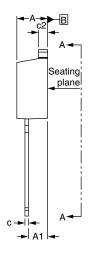
SYMBOL	MILLIM	IETERS	INC	HES	NOTES
STWIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100	BSC	
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

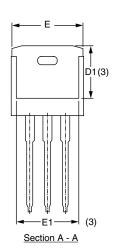
Notes

- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- $^{(3)}\,$ Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch

(7) Outline conforms to JEDEC outline TO-263AB


Vishay High Power Products

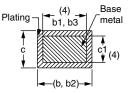

D²PAK, TO-262



DIMENSIONS FOR TO-262 in millimeters and inches

Modified JEDEC outline TO-262 (Datum A) (2) (3)

⊕ 0.010**⋒**|A**⋒**|B


Lead assignments

Diodes

1. - Anode (two die)/open (one die) 2., 4. - Cathode

3. - Anode

Section B - B and C - C Scale: None

SYMBOL	MILLIM	ETERS	INC	INCHES		
	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	4.06	4.83	0.160	0.190		
A1	2.03	3.02	0.080	0.119		
b	0.51	0.99	0.020	0.039		
b1	0.51	0.89	0.020	0.035	4	
b2	1.14	1.78	0.045	0.070		
b3	1.14	1.73	0.045	0.068	4	
С	0.38	0.74	0.015	0.029		
c1	0.38	0.58	0.015	0.023	4	
c2	1.14	1.65	0.045	0.065		
D	8.51	9.65	0.335	0.380	2	
D1	6.86	8.00	0.270	0.315	3	
Е	9.65	10.67	0.380	0.420	2, 3	
E1	7.90	8.80	0.311	0.346	3	
е	2.54	BSC	0.100) BSC		
L	13.46	14.10	0.530	0.555		
L1	-	1.65	-	0.065	3	
L2	3.56	3.71	0.140	0.146		

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimension: inches

(6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.