阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

Standard Recovery Diodes (Stud Version), 70 A

DO-203AB (DO-5)

PRODUCT SUMMARY				
I _{F(AV)}	70 A			
Package	DO-203AB (DO-5)			
Circuit configuration	Single diode			

FEATURES

- High surge current capability
- Designed for a wide range of applications

- Stud cathode and stud anode version
- Leaded version available
- Types up to 1600 V V_{RRM}
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- Converters
- Power supplies
- Machine tool controls
- · Battery charges

MAJOR RATINGS AND CHARACTERISTICS				
	TEST CONDITIONS	70H	LIMITO	
PARAMETER	TEST CONDITIONS	10 TO 120	140/160	UNITS
1		70	70	A
I _{F(AV)}	T _C	140	110	°C
I _{F(RMS)}		110	110	A
1	50 Hz	1200	1200	Δ.
IFSM	60 Hz	1250	1250	A
I ² t	50 Hz	7100	7100	A ² s
1 - 1	60 Hz	6450	6450	A ^c S
V _{RRM}	Range	100 to 1200	1400/1600	V
T _J		-65 to +180	-65 to +150	°C

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS					
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{R(BR)} , MINIMUM AVALANCHE VOLTAGE V	$\begin{aligned} & I_{RRM} \text{ MAXIMUM} \\ \text{AT T}_{J} &= \text{T}_{J} \text{ MAXIMUM} \\ & \text{mA} \end{aligned}$
	10	100	200	200	
	20	200	300	300	15
	30	300	400	400	15
	40	400	500	500	
VS-70HF(R)	60	600	720	725	
V3-70HF(N)	80	800	960	950	9
	100	1000	1200	1150	9
	120	1200	1440	1350	
	140	1400	1650	1550	<i>1.</i> E
	160	1600	1900	1750	4.5

FORWARD CONDUCTION							
PARAMETER	SYMBOL	TEST CONDITIONS		TEST CONDITIONS		(R)	UNITS
PANAMETER	STIVIBUL		TEST CON	DITIONS	10 to 120	140/160	UNITS
Maximum average forward current	I _{F(AV)}	180° condu	ction, half sine	wave	70)	Α
at case temperature	·F(AV)	.00 00.100			140	110	°C
Maximum RMS forward current	I _{F(RMS)}				110		Α
		t = 10 ms	No voltage		1200 1250		
Maximum peak, one cycle forward,	I	t = 8.3 ms	reapplied				Α
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}		1000		
		t = 8.3 ms	reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	105	5	
	l ² t	t = 10 ms	No voltage		7100		- A ² s
10.6.6		t = 8.3 ms	reapplied		6450		
Maximum I ² t for fusing	1-1	t = 10 ms 100 % V _{BBM}		5000		A-S	
		t = 8.3 ms	reapplied		4550		
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to 10 ms, no voltage reapplied		71 0	00	A²√s	
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $T_J = T_J$ maximum			0.7	9	V
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$		1.00		V	
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $T_J = T_J$ maximum			n 2.33		mΩ
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$		$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$ 1.53		3	11122
Maximum forward voltage drop	V_{FM}	$I_{pk} = 220 \text{ A}, T_J = 25 \text{ °C}, t_p = 400 \mu \text{s rectangular wave}$ 1.35			1.35	1.46	V

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	70H	UNITS	
PANAMETEN	STINIBUL	TEST CONDITIONS	10 to 120	140/160	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		-65 to +180	-65 to +150	°C
Maximum thermal resistance, junction to case	R _{thJC}	DC operation 0.45		45	K/W
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat and greased	0.25		
		Not lubricated thread, tighting on nut (1)	3.4	(30)	
Maximum allowable mounting torque (+0 %, -10 %)		Lubricated thread, tighting on nut (1)	2.3	(20)	N · m
		Not lubricated thread, tighting on hexagon (2)	4.2	(37)	(lbf \cdot in)
		Lubricated thread, tighting on hexagon (2)	3.2	(28)	
Approximate weight			1	7	g
Approximate weight			0	.6	oz.
Case style		See dimensions - link at the end of datasheet	DO-	203AB (DO-5)

Notes

- (1) Recommended for pass-through holes
- (2) Recommended for holed threaded heatsinks

△R _{thJC} CONDUCTION						
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS		
180°	0.08	0.06				
120°	0.10	0.11				
90°	0.13	0.14	$T_J = T_J$ maximum	K/W		
60°	0.19	0.20				
30°	0.30	0.30				

Note

• The table above shows the increment of thermal resistance RthJC when devices operate at different conduction angles than DC

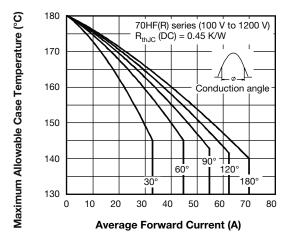


Fig. 1 - Current Ratings Characteristics

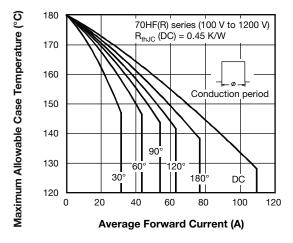


Fig. 2 - Current Ratings Characteristics

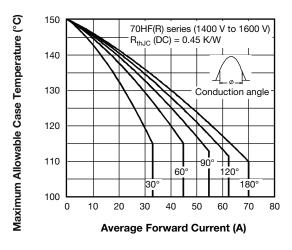


Fig. 3 - Current Ratings Characteristics

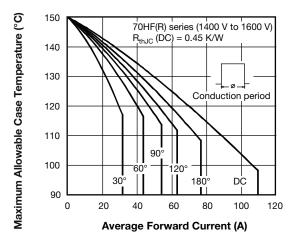


Fig. 4 - Current Ratings Characteristics

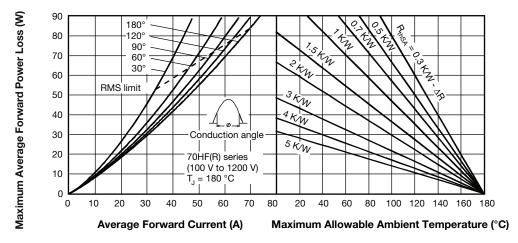


Fig. 5 - Forward Power Loss Characteristics

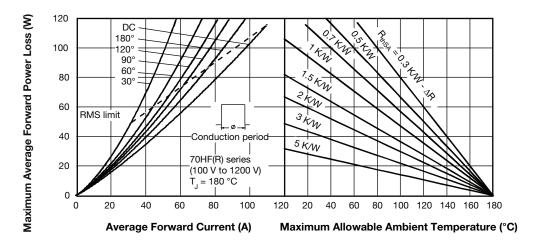


Fig. 6 - Forward Power Loss Characteristics

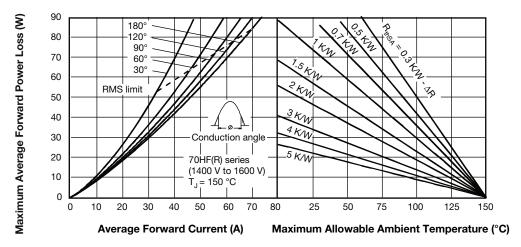


Fig. 7 - Forward Power Loss Characteristics

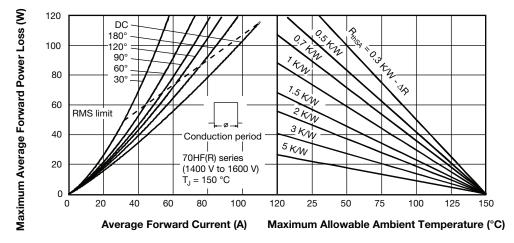


Fig. 8 - Forward Power Loss Characteristics

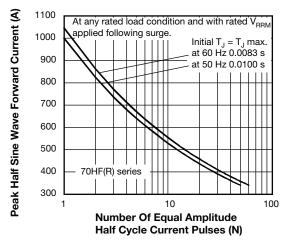


Fig. 9 - Maximum Non-Repetitive Surge Current

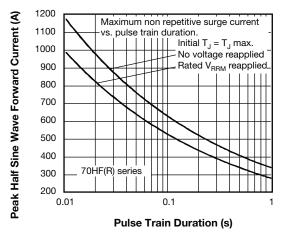


Fig. 10 - Maximum Non-Repetitive Surge Current

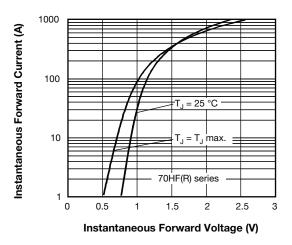


Fig. 11 - Forward Voltage Drop Characteristics

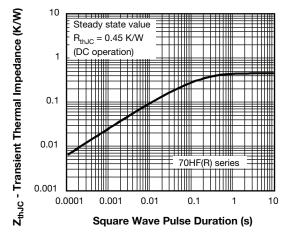


Fig. 12 - Thermal Impedance Z_{thJC} Characteristics

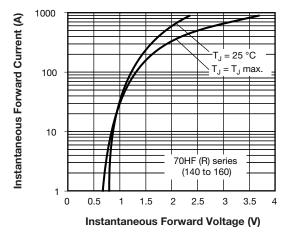


Fig. 13 - Forward Voltage Drop Characteristics

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product

2 - 70 = standard device

71 = not isolated lead

72 = isolated lead with silicone sleeve

(red = reverse polarity)

(blue = normal polarity)

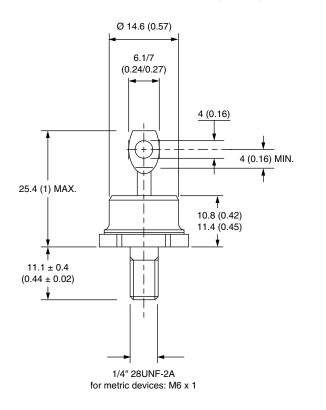
3 - HF = standard diode

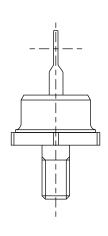
None = stud normal polarity (cathode to stud)

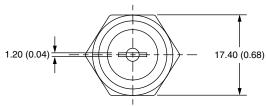
• R = stud reverse polarity (anode to stud)

- Voltage code x 10 = V_{RRM} (see Voltage Ratings table)

None = stud base DO-203AB (DO-5) 1/4" 28UNF-2A

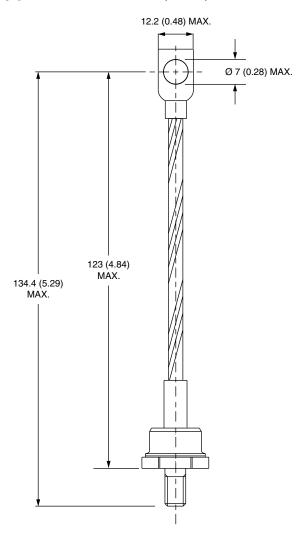

• M = stud base DO-203AB (DO-5) M6 x 1


LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95343		



DO-203AB (DO-5) for 70HF(R) and 71HF(R) Series

DIMENSIONS FOR 70HF(R) SERIES in millimeters (inches)


Outline Dimensions

Vishay Semiconductors

DO-203AB (DO-5) for 70HF(R) and 71HF(R) Series

DIMENSIONS FOR 71HF(R) SERIES in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.