阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

ECP...

Selective circuit breaker

CLIPLINE

Data sheet
100464_en_05

1 Description

The ECP... electronic circuit breaker, which has a design width of just 12.5 mm , selectively protects all 24 V DC load circuits. This is achieved using a combination of active electronic current limitation and proven circuit breaker technology including electrical isolation. The ECP... can be plugged onto the proven TMCP SOCKET M base, which ensures quick and easy mounting.
The ECP... can be used in applications that cover all aspects of the switched-mode power supply unit. In the event of an overload, switched-mode power supply units reduce the output voltage, which means that all the connected loads are no longer sufficiently supplied. This means that if an error occurs in one load of a system, the voltage will be affected in all load circuits.
The ECP... solves this problem by always limiting the maximum possible current to 1.8 times (or 1.5 times) the value of the set nominal current. Capacitive loads can thus be switched on and loads are only switched off in the event of an overload or short circuit.
An LED and integrated signal contacts indicate the operating and error states.

1.1 Properties

- Selective load protection with electrical isolation in the event of an error
- All load types can be connected (small DC motors, etc. on request)
- Active current limitation is typically $1.8 \times \mathrm{I}_{\mathrm{N}}$ (or typically $1.5 \times I_{N}$ at $I_{N}=8 \mathrm{~A}$ or 10 A) when capacitive loads up to $20,000 \mu \mathrm{~F}$ are switched on and in the event of overload/ short circuit
- Electronic shutdown characteristic curve
- Safe overload shutdown from $1.1 \times \mathrm{I}_{\mathrm{N}}$, even for long load cables or low cable cross-sections
- Nominal current can be selected in fixed current strengths from $1 \mathrm{~A} \ldots 10 \mathrm{~A}$ or set to two levels (1 $A / 2 A$ or $3 A / 6 A$) using switches on the device
- Manual on/off switch (push/push actuation)
- Clear indication
- Design width of just 12.5 mm per channel
- Can be plugged into a modular base

NOTE: Make sure that the cable cross-section of the relevant load circuit is adapted to the nominal current of the ECP... used.

Make sure you always use the latest documentation.
It can be downloaded at www.phoenixcontact.net/download.
This data sheet is valid for all products listed on the following page:

00

2 Ordering data

Selective circuit breaker

Description	Type	Order No.	Pcs./Pkt.
Selective circuit breaker, can be plugged into a TMCP base, indication by means of two-color LED, floating signal contact, on/off pushbutton			
$1 \mathrm{~A} / 2$ A nominal current	ECP 1-2	0912018	5
2 A nominal current	ECP 2	0911034	5
3 A/6 A nominal current	ECP 3-6	0916536	5
3 A nominal current	ECP 3	0911047	5
6 A nominal current	ECP 6	0912033	5
8 A nominal current	ECP 8	0912019	5
10 A nominal current	ECP 10	0912020	5
Accessories			
Description	Type	Order No.	Pcs./Pkt.
Modular base, 2-pos., designed to accommodate two 1-pos. circuit breakers, width of 12.5 mm per position	TMCP SOCKET M	0916589	10
Base termination elements, can be plugged into both the left and right-hand side, contain the connections for the reset inputs/group query	TMCP CONNECT LR	0916592	3
Spring lock, for mechanical locking if mounted overhead, 1-pos.	ECP-LOCK	0912021	10
Zack marker strip, 10-section, for labeling the center of the terminal block	ZB 6	See CLIPLINE	
Fixed bridge, plug-in, not insulated, 500 mm long, can be cut to length, for distribution of the supply potential in the base, $I_{\max }=50 \mathrm{~A}$	FBST 500 TMCP	0916615	20
Continuous plug-in bridge, 500 m long, can be cut to length, for potential distribution, $I_{\text {max }}=32 \mathrm{~A}$, red	FBST 500-PLC RD	2966786	20
Continuous plug-in bridge, 500 m long, can be cut to length, for potential distribution, $I_{\max }=32 \mathrm{~A}$, blue	FBST 500-PLC BU	2966692	20
Signal bridge, plug-in, for bridging group indication when there is a free slot on the TMCP SOCKET M base, $I_{\max }=1 \mathrm{~A}$	TCMP SB	0916602	6

3 Technical data

Operating data	
Nominal voltage	24 V DC
DC supply voltage	18 V DC ... 32 V DC
Nominal current I_{N}	Depending on the selected item version: Fixed current strength: $2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}, 6 \mathrm{~A}, 8 \mathrm{~A}, 10 \mathrm{~A}$ Adjustable: $1 \mathrm{~A} / 2 \mathrm{~A}$ or $3 \mathrm{~A} / 6 \mathrm{~A}$
Current consumption I_{0}	13 mA , typical
Tripping current (bimetal)	0.3 A, typical (only in the event of an error, until electrically shut down)
Indication of the operating state	- Two-color LED Green: Device switched on/Power MOSFET controlled Orange: In the event of overload or short circuit until electrically isolated OFF: OFF position of pushbutton - Floating signal contact - OFF position of pushbutton
Protection against polarity reversal of U_{B}	Internal bimetal (failsafe element) triggered, pushbutton moves to OFF position

Load circuit

Load output	Power MOSFET output (positive switching)
Overload shutdown	$1.1 \times I_{\mathrm{N}}\left(1.05 \ldots 1.35 \times I_{\mathrm{N}}\right)$, typical
Short circuit current I_{K}	Active current limitation, $1.8 \times \mathrm{I}_{\mathrm{N}}$ or $1.5 \times \mathrm{I}_{\mathrm{N}}$, maximum (See "Time-current characteristic" on page 5)

Load circuit (continued)	
Shutdown time	5 s at $\mathrm{I}_{\mathrm{L}}>1.1 \times \mathrm{I}_{\mathrm{N}}$, typical $5 \mathrm{~s} \ldots 0.1 \mathrm{~s}$ at $\mathrm{I}_{\mathrm{L}}>1.8 \times \mathrm{I}_{\mathrm{N}}\left(\right.$ or $1.5 \times \mathrm{I}_{\mathrm{N}}$), typical See "Voltage drop, current limitation, maximum load current" on page 4
R_{i} when plugged in	$\hat{=} 50 \mathrm{~m} \Omega$
Temperature shutdown	Internal temperature monitoring with electrical isolation
Undervoltage monitoring of load output	With hysteresis, no reset required: OFF at $U_{B}<8 \mathrm{~V}$ ON at $\mathrm{U}_{\mathrm{B}}>16 \mathrm{~V}$
Switch-on delay ${ }_{\text {Start }}$	0.3 s , typical after each switch-on and after applying U_{B}
Electrical isolation of the load circuit	Single-pos. (switch contact) - By push/push actuation of the blue pushbutton - After electronic error shutdown (overload, short circuit) - In the event of polarity reversal
Free running circuit	External free-wheeling diode recommended on inductive load
Parallel connection of multiple load outputs	Not permitted
Auxiliary contacts	Pin 11 (GND) Pin 12 (individual indication) Pin 13/14 (group query)
Switching capacity I_{CN}	Active current limitation
Error message, signal output	
Error message F	Floating signal contact, switches simultaneously with electrical isolation, 30 V DC/0.5 A, maximum; $10 \mathrm{~V} / 0 \mathrm{~mA}$, minimum
Group indication	Pushbutton ON: Signal contact SC-SO is closed (SC-SI is open) OFF: Signal contact SC-S0 is open (SC-SI is closed)
Optical indication	LED lights up orange (until electrically isolated)
General data	
Width x length	$12.5 \mathrm{~mm} \times 60 \mathrm{~mm}$
Weight	65 g
Service life at $1 \times I_{N}$	10,000
Height On NS 35/7.5... DIN rail On NS 35/15... DIN rail	$\begin{aligned} & 144 \mathrm{~mm} \\ & 151.5 \mathrm{~mm} \end{aligned}$
Ambient temperature	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$ (no condensation, see EN 60204-1)
Storage temperature	$-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Insulation material	PA-F
Inflammability class according to UL 94	Vo
Backup fuse	Not required, since a redundant failsafe element is integrated. If the failsafe element has been triggered, the pushbutton is in the OFF position.
Housing fixing	Can be plugged into TMCP SOCKET M modular base
Slip-on connections	6.3 mm according to DIN 46244-A6.3-0.8
Humid heat	$96 \mathrm{~h} / 95 \%$ relative humidity $/ 40^{\circ} \mathrm{C}$ according to IEC 60068-2-78, Test Cab climatic class 3K3 according to EN 60721
Degree of protection	Housing: IP30, DIN 40050 Terminal blocks: IP00, DIN 40050

Tests/approvals

Conformance with EMC Directive 2004/108/EC	Noise emission: EN 50081-1
	Noise immunity: EN 61000-6-2
Isolation coordination (IEC 60934)	$0.5 \mathrm{kV} /$ pollution degree 2, increased isolation in the actuation area
Dielectric strength	Actuation area: 1000 V AC test voltage
	Installation area: 500 V AC test voltage
	Load circuit signal contact: 500 V AC test voltage
Insulation resistance (OFF state)	$>100 \mathrm{M} \Omega$ (500 V DC) between LINE (+) - LOAD (+)
Vibration resistance	3 g , test according to IEC 60068-2-6 Test Fc
Approvals	c ¢ $_{\text {us }}$
	UL 1077, File E140459 Supplementary Protectors for Use in Electrical Equipment C ϵ

Voltage drop, current limitation, maximum load current

Nominal current I_{N}	Typical voltage drop U_{ON} at I_{N}	Active current limitation (typical)	Maximum load current at 100% operating factor, $\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$	Maximum load current at 100% operating factor, $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$
2 A	180 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	2 A	2 A
3 A	140 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	3 A	3 A
4 A	190 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	4 A	4 A
6 A	280 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	6 A	5 A
8 A	220 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	8 A	7 A
10 A	280 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	10 A	9 A
$1 \mathrm{~A} / 2 \mathrm{~A}$	$140 \mathrm{mV} / 280 \mathrm{mV}$	$1.8 \times \mathrm{I}_{\mathrm{N}}$	$1 \mathrm{~A} / 2 \mathrm{~A}$	$1 \mathrm{~A} / 2 \mathrm{~A}$
$3 \mathrm{~A} / 6 \mathrm{~A}$	$140 \mathrm{mV} / 280 \mathrm{mV}$	$1.8 \times \mathrm{I}_{\mathrm{N}}$	$3 \mathrm{~A} / 6 \mathrm{~A}$	$3 \mathrm{~A} / 5 \mathrm{~A}$

\square When mounted in rows without convection cooling, due to the thermal effect during continuous operation (100\% operating factor) the nominal device current must only be led to a maximum of 80%.

3.1 Block diagram

Figure 1 Block diagram
3.2 Dimensions

Figure 2 Dimensions (in mm)
3.3 Time-current characteristic ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Figure 3 Time-current characteristic

- In the $1.1 \ldots 1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{*}$ range, the typical shutdown time is 5 s .
- The electronic current limitation is typically activated from $1.8 \times \mathrm{I}_{\mathrm{N}}$.
This means that under all overload conditions (regardless of the current supply and load circuit resistance), 1.8 times the nominal current* typically flows until shutdown. The shutdown time ranges from 100 ms (short circuit (I_{K}) to 5 s (in the event of overload with high cable attenuation)).
- Without the current limitation typically activated at $1.8 \mathrm{XI}_{\mathrm{N}}{ }^{*}$, a significantly higher overcurrent would flow in the event of an overload or short circuit.
- If the ECP... has detected an overload or short-circuit condition, the LED changes from green to orange. When the circuit breaker trips, the LED goes out.
- The circuit breaker cannot be reset until the integrated bimetal has cooled down (approximately 10 s).
* Typical current limitation $1.8 \times \mathrm{I}_{\mathrm{N}}$ at $\mathrm{I}_{\mathrm{N}}=0.5 \mathrm{~A} \ldots 6 \mathrm{~A}$ Typical current limitation $1.5 \times \mathrm{I}_{\mathrm{N}}$ at $\mathrm{I}_{\mathrm{N}}=8 \mathrm{~A}$ or 10 A

3.4 Safe shutdown

Safe shutdown of the ECP... for various supply line lengths and cable cross-sections
Specific electrical resistance of electrolytic copper $\rho 0=0.0178\left(\Omega \times \mathrm{mm}^{2}\right) / \mathrm{m}$
$\mathrm{U}_{\mathrm{B}}=19.2 \mathrm{~V}$ DC (80% of 24 V DC)
The voltage drop at the ECP... and the tolerance of the shutdown point (typically $1.1 \mathrm{xI}_{\mathrm{N}}=1.05 \ldots 1.35 \times \mathrm{I}_{\mathrm{N}}$) have already been taken into consideration.
ECP... nominal current setting $\mathrm{I}_{\mathrm{N}}(\mathrm{in} \mathrm{A})$ E.g., Shutdown current $I_{\text {off }}=1.25 \mathrm{Ax}_{\mathrm{N}}($ in A$)$ $\mathbf{R}_{\text {max }}$ in Ohm $=\left(\mathrm{U}_{\mathrm{B}} / \mathrm{I}_{\text {off }}\right)-0.050 \Omega^{1}$
\square 3 A 6 A

ECP... safely trips from 0Ω up to maximum circuit resistance $R_{\max }$

	Cable cross-section \mathbf{A} in $\mathrm{mm}^{2} \rightarrow$	$0.14 \mathrm{~mm}^{2}$	$0.25 \mathrm{~mm}^{2}$	$0.34 \mathrm{~mm}^{2}$	$0.5 \mathrm{~mm}^{2}$	$0.75 \mathrm{~mm}^{2}$	$1 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$
	Distance Lin meters		Total	ble resis	,	= ($\mathrm{R}_{0} \mathrm{x}$	L)/A	
	(= single length) \downarrow	∇	∇	∇	∇	\downarrow	∇	∇
	5 m	1.27Ω	0.71Ω	0.52Ω	0.36Ω	0.24Ω	0.18Ω	0.12Ω
	10 m	2.54Ω	1.42Ω	1.05Ω	0.71Ω	0.47Ω	0.36Ω	0.24Ω
	15 m	3.81Ω	2.14Ω	1.57Ω	1.07Ω	0.71Ω	0.53Ω	0.36Ω
	20 m	5.09Ω	2.85Ω	2.09Ω	1.42Ω	0.95Ω	0.71Ω	0.47Ω
	25 m	6.36Ω	3.56Ω	2.62Ω	1.78Ω	1.19Ω	0.89Ω	0.59Ω
	30 m	7.63Ω	4.27Ω	3.14Ω	2.14Ω	1.42Ω	1.07Ω	0.71Ω
	35 m	8.90Ω	4.98Ω	3.66Ω	2.49Ω	1.66Ω	1.25Ω	0.83Ω
	40 m	10.17Ω	5.70Ω	4.19Ω	2.85Ω	1.90Ω	1.42Ω	0.95Ω
	45 m	11.44Ω	6.41Ω	4.71Ω	3.20Ω	2.14Ω	1.60Ω	1.07Ω
	50 m	12.71Ω	7.12Ω	5.24Ω	3.56Ω	2.37Ω	1.78Ω	1.19Ω
	75 m	19.07Ω	10.68 ת	7.85Ω	5.34Ω	3.56Ω	2.67Ω	1.78 ת
	100 m	25.34Ω	14.24Ω	10.47Ω	7.12Ω	4.75Ω	3.56Ω	2.37Ω
	125 m	31.79Ω	17.80Ω	13.09Ω	8.90Ω	5.93Ω	4.45Ω	2.97Ω
	150 m	38.14Ω	21.36Ω	15.71Ω	10.68Ω	7.12Ω	5.34Ω	3.56Ω
	175 m	44.50Ω	24.92Ω	18.32Ω	12.46Ω	8.31Ω	6.23Ω	4.15Ω
	200 m	50.86Ω	28.48Ω	20.94Ω	14.24Ω	9.49Ω	7.12Ω	4.75Ω
	225 m	57.21Ω	32.04Ω	23.56Ω	16.02Ω	10.68Ω	8.01Ω	5.34Ω
	250 m	63.57Ω	35.60Ω	26.18Ω	17.80Ω	11.87Ω	8.90Ω	5.93Ω

Example 1: Maximum permissible distance for $1.5 \mathrm{~mm}^{2}$ and $3 \mathrm{~A} \rightarrow$ Approximately $200 \mathbf{m}^{2}$
Example 2: Maximum permissible distance for $1.5 \mathrm{~mm}^{2}$ and $6 \mathrm{~A} \rightarrow$ Approximately 100 m

Example 3: Mixed wiring:
(Control cabinet --- sensor/actuator level)
$\mathrm{R} 1=40 \mathrm{~m}$ in $1.5 \mathrm{~mm}^{2}$ and $\mathrm{R} 2=5 \mathrm{~m}$ in $0.25 \mathrm{~mm}^{2}$
$\mathrm{R} 1=0.95 \mathrm{Ohm}, \mathrm{R} 2=0.71 \mathrm{Ohm}$
Total (R1 + R2) $=\mathbf{1 . 6 6} \mathbf{O h m}$

1 Internal resistance of miniature circuit breakers
2 Shutdown current $I_{\text {off }}=3 \mathrm{~A} \times 1.25 \mathrm{~A}=3.75 \mathrm{~A}$
Maximum circuit resistance $R_{\max }=U_{B} / l_{\text {off }}-0.050 \Omega$ (internal resistance of miniature circuit breakers)
$R_{\text {max }}=(19.2 \mathrm{~V} / 3.75 \mathrm{~A})-0.050 \Omega=5.07 \Omega$
In the table, the calculated value of 5.07Ω lies between 200 m and 225 m (4.75Ω and 5.34Ω).
Therefore a distance of around 200 m can be covered.

4 Mounting on a modular base

The TMCP SOCKET M base is snapped onto a DIN rail and can accommodate two ECP... devices.

The two-channel bases are modular, which means that larger distribution systems can be created. A connection element is inserted at both the start and end of the system.
Current distribution on the individual channels with a common supply (positive pole) is achieved by inserting a power rail in the slot provided on the connection side of the modules.
All electrical connections are established using spring-cage terminal blocks. The reference potential for the ECP... (GND pin 11) is also looped through and led to the side connection elements.

By connecting together the individual bases, all the internal wiring is established for the ground potential and group error message.
The ECP... has an integrated signal contact (PDT). The SC-SO contact is used for the group error message. The contacts for this indication are already connected in series in the bases and are connected to the side connection elements via two connections $(13,14)$.
In each base, the series circuit can be contacted using a test socket and any interruptions can thus be determined.

4.1 Technical data

TMCP SOCKET M	
Test contact for testing group indication on a cable interrupt	$\varnothing=2 \mathrm{~mm}$
Nominal voltage (without ECP...)	433 V AC; 65 V DC
Nominal current (without ECP...)	
LINE supply (1)	50 A
LOAD output (2)	25 A
Reference potential GND (11)	10 A
Individual indication (12)	1.0 A (with ECP...: 0.5 A)
Group indication (13-14)	1.0 A (with ECP...: 0.5 A)
Internal resistance (without ECP...)	
LINE-LOAD (1-2)	$5 \mathrm{~m} \Omega$
Indication (13-14) for each module	$8 \mathrm{~m} \Omega /$ each position plus each additional aligned module: $+5 \mathrm{~m} \Omega$
Supply rail for current distribution	Uninsulated power rail $I_{\text {max }} 50 \mathrm{~A}$ (the uninsulated power rail is inserted fully and is therefore safe to touch)
Dielectric strength of base (without ECP....)	
Between main circuits (without power rail)	1500 V
Main circuit to signal circuit	1500 V
Signal circuit to signal circuit	1500 V
Weight	
Central part	85 g , approximately
Connection elements (pair)	30 g , approximately
Approval	Meets standard UL 60950

4.2 Dimensions with base

Figure 4 Dimensions (in mm)

Figure 5 Assembly
To assemble, proceed as follows:

- Snap TMCP SOCKET M base onto an NS 35 DIN rail according to EN 60751.
- Push bases together.
- Snap on TMCP CONNECT LR base termination elements to the left and right-hand side.
- Cut FBST 500... power rails to length as required and insert in bases.
- Insert connecting cables in the spring-cage terminal blocks (see "Connecting spring-cage terminal blocks" on page 8 and "Pin assignment on base" on page 8).
- Insert ECP....
- If necessary, secure the ECP... and base using a clamp (see "Locking the base and ECP..." on page 9).

4.4 Connecting spring-cage terminal blocks

Spring-cage terminal blocks for solid wires and stranded cables with and without ferrules.
Use the specified screwdriver size (SD) to release the spring cage.

Connection	Spring-cage terminal blocks for	Screwdriver size (SD)
LINE supply (1)	$1.5 \ldots 10 \mathrm{~mm}^{2}$	SD $2(0.8 \times 4.0 \mathrm{~mm})$
LOAD output (2)	$0.25 \ldots 4 \mathrm{~mm}^{2}$	SD $1(0.6 \times 3.5 \mathrm{~mm})$
Reference potential GND or group indication connections (11 or 13, 14)	$0.25 \ldots 2.5 \mathrm{~mm}^{2}$	SD $1(0.6 \times 3.5 \mathrm{~mm})$
Individual indication connection (12)	$0.25 \ldots 1.5 \mathrm{~mm}^{2}$	SD $0(0.4 \times 2.5 \mathrm{~mm})$

4.5 Pin assignment on base

Figure 6 Connection diagram

Figure 7 Pin assignment

4.6 Locking the base and ECP...

If mounted overhead, the ECP... must be connected to the base using the ECP-LOCK clamp.

Figure 8 Mounting the ECP-LOCK

Figure 9 Removing the ECP-LOCK

