阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

KARAOKE echo IC BU9253AS / BU9253FS / BU9255FS

The BU9253AS, BU9253FS and BU9255FS are single-chip ICs that contain all the components needed to configure a KARAOKE echo system: an A / D and D / A converter, SRAM, LPF, and mixer for mixing source signals. With these ICs, an echo function can be configured easily and with minimum external components.

- Applications

KARAOKE functions for portable stereo sets, mini component stereo sets, video CDs and DVDs, etc.

- Features

1) Echo mixing ratio is adjustable with a DC voltage.
2) Delay time of 131 ms . $($ when fcLk $=357 \mathrm{kHz}$)
3) A second order LPF can be configured with the internal amplifier and an attached capacitor and
4) Internal mute function.
5) Single power supply (5V). resistor.

- Block diagram

BU9253FS / BU9255FS

BU9253AS

RaHm

- Pin descriptions

BU9253FS / BU9255FS

Pin No.	Pin name	Function
1	GND	Ground
2	ECHO VR	Echo level DC control
3	BIAS	Analog DC bias
4	DAINT IN	DA integrator input
5	DAINT OUT	DA integrator output
6	DALPF IN	DA LPF input
7	DALPF OUT	DA LPF output
8	MIX OUT	Source sound and echo sound mixing output
9	MIX IN	Mixing amplifier source sound input
10	ADLPF IN	AD LPF input
11	ADLPF OUT	AD LPF output
12	ADINT OUT	AD integrator output
13	ADINT IN	AD integrator input
14	Vcc	Vcc
15	MUTE	Mute control
16	CR	Oscillator output

BU9253AS

Pin No.	Pin name	Function
1	GND	Ground
2	ECHO VR	Echo level DC control
3	N.C.	Internally
4	BIAS	Analog DC bias
5	DAINT IN	DA integrator input
6	DAINT OUT	DA integrator output
7	DALPF IN	DA LPF input
8	DALPF OUT	DA LPF output
9	MIX OUT	Source sound and echo sound mixing output
10	MIX IN	Mixing amplifier source sound input
11	ADLPF IN	AD LPF input
12	ADLPF OUT	AD LPF output
13	ADINT OUT	AD integrator output
14	ADINT IN	AD integrator input
15	Vcc	Vcc
16	N.C.	Internally
17	MUTE	Mute control
18	CR	Oscillator output

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Limits	Unit
Applied voltage		Vcc	7	V
Power dissipation	BU9253FS	Pd	500*1	mW
	BU9253AS		600*2	
	BU9255FS		500*1	
Operating temperature		Topr	$-10 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage temperature		Topr	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$
Input voltage		Vin	$-0.3 \sim \mathrm{Vcc}+0.3$	V

*1 Reduced by 5.0 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
*2 Reduced by 6.0 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.

Recommended operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	$V_{c c}$	4.0	5.0	5.5	V

- Electrical characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}\right.$, fclk $=375 \mathrm{kHz}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{I}}=-10 \mathrm{dBV}$, pin $2=\mathrm{Vcc}$, pin $15=\mathrm{Vcc}$, distortion $=400 \mathrm{~Hz} \sim 30 \mathrm{kHz}$ filter, output noise voltage : DIN-AUDIO)
*Pin No. are for BU9253FS , BU9255FS and BU9253AS

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Current consumption	Icc	-	6	12	mA	No signal
Voltage gain 1	Gv1	- 5.6	-3.5	-1.4	dB	Delay total gain IN1 \rightarrow OUT
Voltage gain 2	Gv2	- 1	0	1	dB	Through total gain IN2 \rightarrow OUT, pin2 = ground
Output distortion 1	THD1	-	1.5	3	\%	Delay side
Output distortion 2	THD2	-	0.02	0.1	\%	Through, pin2 = ground
Output noise voltage 1	VNO1	-	-80	-60	dBV	Delay, $\mathrm{Rg}=1 \mathrm{k} \Omega$
Output noise voltage 2	VNo2	-	-90	-80	dBV	Through side $\mathrm{Rg}=1 \mathrm{k} \Omega$, pin2 $=$ ground
Max. output voltage 1	Vом1	1.4	1.7	-	$\mathrm{V}_{\text {ms }}$	Delay, THD = 10\%
Max. output voltage 2	Vом2	1.4	1.7	-	$\mathrm{V}_{\text {ms }}$	Through side, $\mathrm{THD}=1 \%$ Pin $2=$ ground
Mute control	V_{H}	3.8	-	5.0	V	H mode hold voltage, pin 15 DC
	VM	1.6	-	2.8	V	M mode hold voltage, pin 15 DC
	VL	0	-	0.7	V	L mode hold voltage, pin 15 DC
Oscillation frequency	fc	-	375	-	kHz	

- Measurement circuit (for BU9253FS / BU9255FS)

Fig. 1

- Application example (for BU9253FS / BU9255FS)

Fig. 2
(1) Mute control functions

Pin 15 voltage (pin 17)	Mode
H	Unmuted (operating state)
M	Muted
L	Clock stop and muted

- When switching between the muted and unmuted state (pin 15 (pin 17) $\mathrm{L} \rightarrow \mathrm{M} \rightarrow \mathrm{H}$), the pin 15 (pin 17) M time should be longer than one SRAM cycle. This is to assure stability by initializing the SRAM before mode switching.
Note: Figures in parentheses () are for BU9253AS.
(2) Differences between BU9253AS / FS and BU9255FS There is a difference regarding the signal stopping for muting. With BU9253AS / FS, the output from pin 8 (pin 9) is stopped during muting. With BU9255FS, the output from pin 5 is stopped during muting.
(3) Setting the echo loop gain

Echo loop $A T T V_{\text {IN }} \sim V_{D L Y} \cdots A=\frac{V_{D L Y}}{V_{I N}}(A<1)$ * With Pin NO. BU9253FS

Fig. 3

With Vomax being the maximum amplitude of V_{0} at this time (when the phases, including that of the DLY circuit, are in alignment):

$$
\text { VoMax. }=(1+A+A 2+\cdots) V_{\mathbb{N}}=\sum_{K=0}^{\infty} \quad A^{K} \cdot V_{\mathbb{N}}=\frac{1}{1-A} V_{\mathbb{N}}
$$

Thus, maximum allowable input is the value of Vomax provided the specifications $(1=A)$. Assuming a feedback ratio (A) of 0.7 and a maximum Vout of $4.0 \mathrm{Vp-p}$, Vin must be less than 1.2 V.p.p.

- External dimensions (Units: mm)

