

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

2-wire serial sound control IC BH3856S / BH3856FS

The BH3856S and BH3856FS are signal processing ICs designed for volume and tone control in televisions, mini component stereo systems, and other audio products. Their two-line serial control (I²C BUS) enables them to control volume and tone on the basis of signals from a microcomputer, etc.

Applications

Televisions, [Video equipped television], personal computer televisions, mini component stereo systems, car stereos.

Features

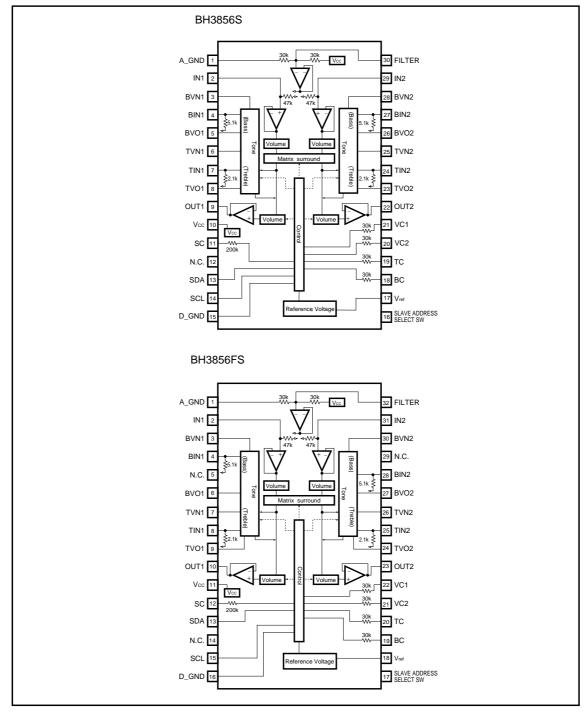
- 1) I²C BUS facilitates direct serial control from a microcomputer of volume (main volume), balance (left / right), and tone (bass, treble). DC control is also possible.
- 2) Volume is produced by a low-distortion, low-noise VCA. Designed to minimize step noise.
- 3) Stable standard voltage supply and built-in I/O buffer mean that few attachments are needed. SSOP-A32 package designed to save space.
- 4) Matrix surround yields powerful sound.

● Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit
Power supply voltage		Vcc 10.0		V
Power dissipation	BH3856S	Pd	1200*1	mW
Power dissipation	BH3856FS	Pu	850 *2	IIIVV
Operating temperature Storage temperature		Topr	-40~+85	°C
		Tstg	-55~+150	°C

*1 Reduced by 12mW for each increase in Ta of 1°C over 25°C.

*2 Reduced by 6.8mW for each increase in Ta of 1°C over 25°C.


•Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	6.0	9	9.5	V

Note : I²C BUS is a registered trademark of Philips.

BH3856S / BH3856FS

Block diagram

Audio ICs

Pin descriptions

Pin	No.	Pin name	Function				
BH3856S BH3856FS		Fill lidille					
1	1	A_GND	Analog ground				
2	2	IN1	Channel 1 volume input				
3	3	BVN1	Channel 1 bass filter				
4	4	BIN1	Channel 1 bass filter				
5	6	BVO1	Channel 1 bass filter				
6	7	TVN1	Channel 1 treble filter				
7	8	TIN1	Channel 1 treble filter				
8	9	TVO1	Channel 1 treble filter				
9	10	OUT1	Channel 1 volume output				
10	11	Vcc	Power supply				
11	12	SC	Time constant pin for prevention of switching shock				
13	13	SDA	SDA data input pin				
14	15	SCL	SCL data input pin				
15	16	D_GND	Digital ground				
16	17	SASS	Slave address selection pin				
17	18	Vref	Reference voltage output				
18	19	BC	Time constant pin for prevention of switching shock				
19	20	тс	Time constant pin for prevention of switching shock				
20	21	VC2	Time constant pin for prevention of switching shock				
21	22	VC1	Time constant pin for prevention of switching shock				
22	23	OUT2	Channel 2 volume output				
23	24	TVO2	Channel 2 treble filter				
24	25	TIN2	Channel 2 treble filter				
25	26	TVN2	Channel 2 treble filter				
26	27	BVO2	Channel 2 bass filter				
27	28	BIN2	Channel 2 bass filter				
28	30	BVN2	Channel 2 bass filter				
29	31	IN2	Channel 2 volulme input				
30	32	FILTER	Filter				
12	5, 14, 29	N.C.	Not connected internally.				

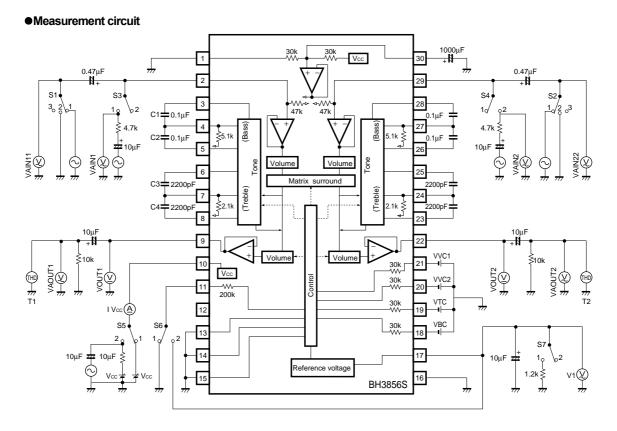
Audio ICs

Symbol	Pin voltage	Equivalent circuit	Description
IN1 IN2	4.5V 4.5V	Zpin 31pin A_GND 2/1Vcc	Main volume input pin. Designed for input impedance of 47kΩTyp.).
BVN1 BVN2	4.5V 4.5V	Vac 50kG A_GND A_GND	Pin for low band filter connection.
BIN1 BIN2	4.5V 4.5V	4pin 28pin A_GND	Pin for low band filter connection.
BVO1 BVO1	4.5V 4.5V	Voc Spin 27pin A_GND	Pin for low band filter connection.
FILTER	5.2V	Voc 4_GND Харип 3арка	Filter input pin. Please install a capacitor of about 10µF to the filter pin. Has built-in precharge and discharge circuits.
TVN1 TVN2	4.5V 4.5V	Vcc 25k2 A_GND A_GND	Pin for high band filter connection.
TIN1 TIN2	4.5V 4.5V	Vcc 8pin 25pin 2.1kΩ 4_GND	Pin for high band filter connection.

*The pin numbers are for the BH3856S.

Audio ICs

Symbol	Pin voltage	Equivalent Circuit	Description
TVO1 TVO2	4.5V 4.5V	Vcc 2550 A_GND 24pin	Pin for high band filter connection.
OUT1 OUT2	4.5V 4.5V	Vcc 10pin 24pin A_GND	Main volume output pin. OUT1 is the volume output for Channel 1. OUT2 is the volume output for Channel 2.
SC BC TC VC1 VC2	_	Voc Digual 12pin 12pin 12pin 22pin 22pin 22pin 21pin	For prevention of shock noise during step switching. SC : Surround pin BC : Bass pin TC : Treble pin VC1 : Volume pin (Channel 1) VC2 : Volume pin (Channel 2)
Vref	3.8V		3.8V regulator output pin. Output requires capacitor for stopping oscillation. Output pin has built-in precharge and discharge circuits, so there is no problen with start-up or shut-down even with a large capacitor. This pin is for connection to the high-band filter.
SDA SCL SASS	_	Vcc ZkQ 13pin 15pin 17pin 17pin	 I²C bass input pin SDA : serial data line SCL : serial clock line Slave address selection pin SASS: slave address selection switch
Vcc	-	Power supply voltage pin.	
A_GND	-	Analog GND pin. Connected to IC board.	
D_GND	-	Digital GND pin. Separate from Analog GND pin.	


*The pin numbers are for the BH3856S.

TONE =	ALL FLA	T, Rg =	600Ω, F	R∟ = 10	kΩ)	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current	la	-	20	27	mA	No signal
Maximum input	Vim	2.3	2.5	_	Vrms	THD=1%, VOL=-20dB (ATT)
Maximum output	Vom	2.3	2.5	-	Vrms	THD=1%
Voltage gain	Gv	-1.5	0	+1.5	dB	V _{IN} =1Vrms
Maximum attenuation	ATT	90	110	_	dB	Vo=1Vrms
Crosstalk	Vст	70	80	_	dB	Vo=1Vrms
	VB Max.	+12	+15	+18	dB	100Hz, VIN=100mVrms
Low range control width	VB Min.	-18	-15	-12	dB	100Hz, VIN=100mVrms
High range control width	VT Max.	+12	+15	+18	dB	100kHz, V _{IN} =100mVrms
High range control width	VT Min.	-18	-15	-12	dB	100kHz, VIN=100mVrms
Matrix surround single-channel gain	Gsr	4	6	8	dB	Vo=1Vrms *
Total Harmonic distortion	THD	-	0.01	0.1	%	Vo=0.5Vrms, BPF=400Hz~30kHz
Output noise voltage	VN01	-	45	65	μVrms	No signal, VOL=Max., R _g =0 *
Residual output noise voltage	VMNO	_	2	10	μVrms	No signal, VOL=–∞, Rg=0 *
Reference power supply output voltage	Vref	3.5	3.8	4.1	V	Iref=3mA
Reference power supply output current capacity	Iref	3.0	10	_	mA	V _{ref} > 3.7V
Channel balance	Gсв	-1.5	0	+1.5	dB	channel 1 taken as the standard for measurements.
Input impedance	Rıℕ	33	47	61	kΩ	f=1kHz
Output impedance	Rout	_	_	10	Ω	f=1kHz
Ripple rejection ratio	RR	40	_	_	dB	f=100Hz, V _{RR} =1Vrms
Input high level voltage	Vін	4	_	_	V	SCL, SDA
Input low level voltage	VIL	-	_	1	V	SCL, SDA

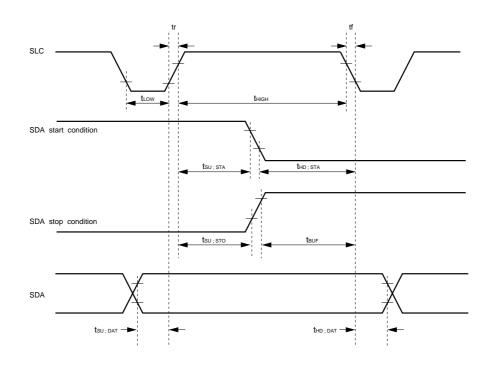
• Electrical characteristics (unless otherwise noted, Ta = 25°C, V ∞ = 9V, f = 1kHz, BW = 20 ~ 20kHz, VOL = Max., TONE = ALL FLAT, Rg = 600 Ω , RL = 10k Ω)

* Measurement performed using Matsushita Communication Industrial VP-9690A DIN AUDIO filter (average value wave detection, effective value display). © Not designed for radiation resistance.

Signal input occurs in equiphase.

Units : R [Ω] C [F]

Fig.1


Note : Diagram depicts the BH3856S.

Audio ICs

•Performing data settings

(1) I²C BUS timing

Parameter	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency	fsc∟	0	-	100	kHz
SCL clock hold time, HIGH state	tніgн	4	-	-	μs
SCL clock hold time, LOW state	tLOW	4.7	-	-	μs
SDA and SDL signal start-up time	tr	-	-	1	μs
SDA and SDL signal shut-down time	tf	-	-	0.3	μs
Set-up time for re-send [start] conditions	tsu;sta	4.7	_	-	μs
Hold time (re-send) [start] conditions (After hold time ends, initial clock pulse is generated.)	thd;sta	4	_	_	μs
Set time for [stop] conditions.	tsu;sтo	4.7	-	-	μs
Bus free time between [stop] condition and [start] condition	tBUF	4.7	-	-	μs
Data set-up time	tsu;dat	250	_	_	ns

 $\label{eq:tsu} \begin{array}{l} t_{\text{SU}\,;\,\text{STA}} = start \mbox{ code set-up time.} \\ t_{\text{HD}\,;\,\text{STA}} = start \mbox{ code hold time.} \\ t_{\text{SU}\,;\,\text{STO}} = stop \mbox{ code set-up time.} \end{array}$

 $\label{eq:bus} \begin{array}{l} t_{\text{BUF}} = bus \ free \ time. \\ t_{\text{SU}\,;\,\text{DAT}} = data \ set\text{-up time.} \\ t_{\text{HD}\,;\,\text{DAT}} = data \ hold \ time. \end{array}$

I²C BUS timing rules

Audio ICs

(2) I ² C BUS data format

	(2)10	, DOS uala ionnal						
		MSB LSE	5	MSB LSB		MSB LSB		
	S	Slave address	А	Select address	A	Data	A	Р
-	1bit	8bit	1bit	8bit	1bit	8bit	1bit	1bit

•S	= start condition (start bit recognition)
 Slave address 	= IC recognition. Upper 7 bits are random. Bottom bit is "L" for the sake of overwrite.
• A	= acknowledge bit (recognition of acknowledgment)
Select address	= selection between volume, bass, treble and matrix surround.
• Data	= volume and tone data
• P	= stop condition (stop bit recognition)

(3) BH3856S / BH3856FS slave address

N	/ISB							LSE	3
	A6	A5	A4	A3	A2	A1	A0	R/W	
	1	0	0	0	0	0	А	0	

Slave address selection

1) A = 1 (10000010) [SASS pin HIGH] 2) A = 0 (1000000) [SASS pin LOW]

(4) Interface protocol

1) Basic protocol

s	Slave addres	s	А	Select addres	s	А	Data	А	Ρ
	MSB	LSB		MSB	LSB		MSB LSB		

2) Auto increment (Select address increases (+1) by the value of the data.)

S	Slave address	А	Select addre	SS	A		Data 1, data 2,data N		А	Ρ
	MSB LSB		MSB	LSB		MSB		LSB		

(Example 1) The address data specified by select address is taken as data 1. (Example 2) The address data specified by select address +1 is taken as data 2. (Example 3) The address data specified by select address +N-1 is taken as data N.

3) Structure with which transmission is not possible (In this case, only select address 1 is set.)

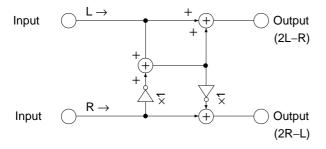
s	Slave address	A	Select addre	ss 1	А	Dat	ta	А	Select addres	is 2	A	Dat	a	А	Ρ
	MSB LS	В	MSB	LSB		MSB	LSB		MSB	LSB	Ν	ИSB	LSB		

Note : Following transmission of data, data transmitted as select address 2 will not be recognized as select address 2, but as data.

Function		Select address						MSB Data						LSB		
	MSB		00		auure	:55		LSB	D7	D6	D5	D4	D3	D2	D1	D0
① Volume ch1 (L)	0	0	0	0	0	0	0	0	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0
1 Volume ch2 (R)	0	0	0	0	0	0	0	1	VR7	VR6	VR5	VR4	VR3	VR2	VR1	VR0
2) Bass	0	0	0	0	0	0	1	0	0	0	BA5	BA4	BA3	BA2	BA1	BA0
③Treble	0	0	0	0	0	0	1	1	0	0	TR5	TR4	TR3	TR2	TR1	TR0
④ Surround	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	SR0

(5) Specification of select address and data

*The auto increment function cycles the select address in the manner shown in Figure A.


 $\begin{array}{ccc} (\text{Fig. A}) & \textcircled{0} \rightarrow \textcircled{1} \rightarrow \textcircled{2} \\ & \uparrow & \downarrow \\ & \textcircled{4} \leftarrow \leftarrow \overleftarrow{3} \end{array}$

*The cycle commences from the initially specified select address.

(6) Surround data

Function	MSB Data									
	D7	D6	D5	D4	D3	D2	D1	D0		
Matrix surround OFF	0	0	0	0	0	0	0	0		
Matrix surround ON	0	0	0	0	0	0	0	1		

(7) Matrix surround

Audio ICs

ATT (dB)	DATA (HEX)	ATT (dB)	DATA (HEX)		ATT (dB)	DATA (HEX)
0	FF	-19	85	· · ·	-56	42
-1	E4	-20	82		-58	3F
-2	D8	-22	7C		-60	3C
-3	CF	-24	78		-62	39
-4	C8	-26	74		-64	36
-5	C2	-28	70		-66	34
-6	BD	-30	6D		-68	32
-7	B8	-32	6A		-70	2F
-8	B2	-34	68		-72	2D
-9	AD	-36	65		-74	2A
-10	A9	-38	61		-76	28
-11	A5	-40	5C		-78	26
-12	A0	-42	59		-80	24
-13	9C	-44	55		-82	22
-14	98	-46	52		-84	20
-15	94	-48	4E		-86	1E
-16	90	-50	4B		-90	1A
-17	8C	-52	48		-100	13
-18	89	-54	45		-112	00

(8) Volume attenuation (reference values)

Note : All figures in this table are reference values. When using this IC, check this table carefully and perform the appropriate setting.

(9) Bass / Treble gain settings (reference values)

ATT (dB)	DATA (HEX)	-	ATT (dB)	DATA (HEX)
15	ЗF	•	0	1F
14	38	-	-1	1C
13	35		-2	1B
12	33	-	-3	19
11	31	_	-4	18
10	2F	_	-5	17
9	2E	_	-6	16
8	2D	_	-7	15
7	2C	-	-8	13
6	2B	_	-9	12
5	2A	_	-10	11
4	29	_	-11	0F
3	27	_	-12	0D
2	26		-13	0B
1	25	_	-14	08
0	1F	-	-15	05

Notes : (1) The gain values in the treble and bass data setting tables above are based on the assumption that the filter constants have been set so that maximum and minimum gain are equal to the peak and bottom values listed in the frequency characteristics drawings.

(2) All figures in this table are reference values. When using this IC, check this table carefully and perform the appropriate setting.

Application example

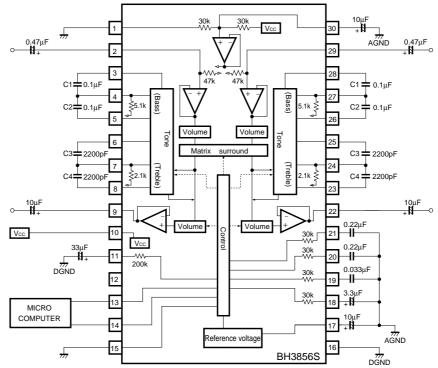
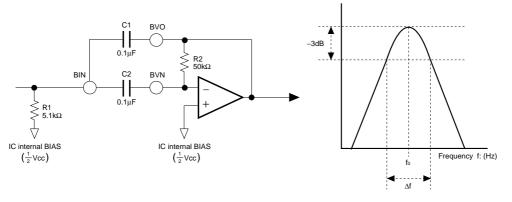


Fig.2


Note : Diagram depicts the BH3856S.

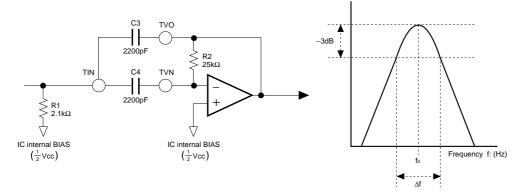
Operation notes

(1) Operating power supply voltage range

As long as the operating power supply voltage and ambient temperature are kept within the specified range, the basic circuits are guaranteed to function, but be sure to check the constants as well as the element settings, voltage settings, and temperature settings.

(2) Bass filter

*B.P.F. composed of multiple feedback active fo can be varied according to the value of C.BIN (theoretical equation)


$$f_{0} = \frac{1}{2\pi} \times \left(\frac{1}{R_{1}R_{2}C_{1}C_{2}}\right)^{\frac{1}{2}} \qquad Q \coloneqq \left(\left(\frac{1}{R_{2}C_{1}C_{2}}\right)^{\frac{1}{2}} \times (C_{1} + C_{2})\right)^{-1}$$

$$G = \frac{R_{2}}{5k\Omega} \times \left(1 + \frac{C_{1}}{C_{2}}\right)^{-1} \qquad Note : Filter gain is calculated using the equation on the left. Total output gain is the sum of the gain for each of the internal circuits.$$

(When $R_1 = 5.1k\Omega$, $R_2 = 50k\Omega$, $C_1 = C_2 = C$)

$$f_0 = \frac{1.0 \times 10^{-5}}{C}$$
 Q = 1.57 G = 5.0

(3) About the treble filter

*The band-pass filter is constructed using a multiple-feedback active filter. fo can be varied by changing the value of the capacitors.

(Theoretical formulas)

$$f_0 = \frac{1}{2\pi} \times \left(\frac{1}{R_1 R_2 C_3 C_4}\right)^{\frac{1}{2}}$$

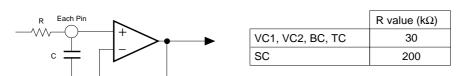
$$G = \frac{R_2}{5k\Omega} \times \left[1 + \frac{C_3}{C_4}\right]^{-1}$$
Not

 $\label{eq:Q} Q \coloneqq \left(\left(\frac{R_1}{R_2 C_3 C_4} \right)^{\frac{1}{2}} \times (C_3 + C_4) \right)^{-1}$ Note : The filter gain is given by the formula on the left, but the total output gain is determined by the this in combination with the internal circuit.

(When $R_1 = 2.1k\Omega$, $R_2 = 25k\Omega$, $C_3 = C_4 = C$)

$$f_0 = \frac{2.2 \times 10^{-5}}{C}$$
 Q = 1.73 G = 2.5

(4) I²C BUS control

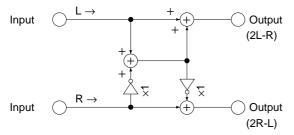

High-frequency digital signals are input on the SCL and SDA terminals, so ensure that the wiring and PCB pattern is designed in such a way as to ensure that these signals do not interfere with the analog signal system. If you are not using I²C BUS control (i.e. you are using DC control), connect the SCL, SDA and SASS terminals to GND (do not leave them disconnected).

(5) Step switching noise

The VC1, VC2, TC, BC and SC terminals have components connected to them the application example. The values of these components may need to be changed depending on the signal level setting and PCB pattern.

Investigate carefully before deciding on the values of the various circuit constants.

The equivalent circuit for these terminals is given below (an integrator circuit is set at the first stage to slow the variation).


(6) Volume and tone level settings

This specification sheet gives reference values for the amount of attenuation and gain with respect to the serial control data. The internal D / A convertor is an R-2R circuit, and data exists for the places where continuous variation does not occur between data. Use this when fine setting is required. The setting limits are <u>up to 8 bits for volume (256 steps) and 6 bits (64 steps) for tone</u>.

(7) Digital / analog separation

The digital and analog power supplies and grounds for this IC (BH3856) are completely separate. The digital circuits are supplied from a stable reference source that is on the chip ($V_{ref}(3.8V)$). For this reason, there is no need to worry about timing shifts, on interference due to digital noise.

(8) Matrix surround

*The matrix surround circuit construction is as shown in the diagram above. The gain is obtained from the formulas in the diagram.

Phase Gain	0dB
Negative Phase Gain	6dB

(However, reverse-phase gain is for input to one channel only)

(9) DC control

An internal impedance of $30k\Omega$ is seen from the VC1, VC2, TC and BC terminals, are $200k\Omega$ is seen from the SC (pin 11) terminal, so with regard to DC control, we recommend direct control with the voltage source. When using variable volume, take the impedance into consideration when making the setting.

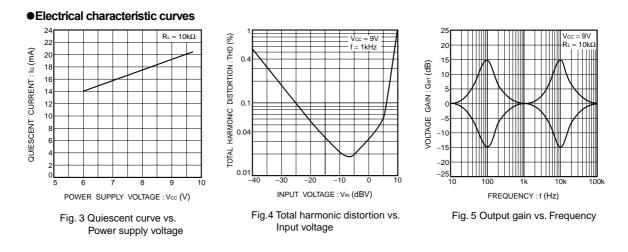
Note : The DC control voltage range is 0V to Vref.

Do not apply voltages above Vref to the terminals.

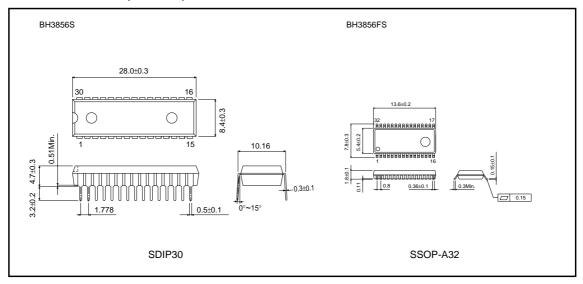
(10) GND

• As shown in the application circuit example, connect the external component GND to the analog GND.

However, the GND for the capacitor connected to the Vreterminal should be connected to the digital GND.


• If a capacitor with goof high-frequency characteristics is connected in parallel with the capacitor connected to V_{ref} , the

performances of the circuit with respect to static noise will improve (we recommend a ceramic capacitor of between 0.001μ F and 0.1μ F)


• When using long digital and analog ground lines, take care to ensure that there is no potential difference between the two ground lines.

Audio ICs

•External dimensions (Units : mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.

 Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.

Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.

• Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by

- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.