

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

# **Read Statement**

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

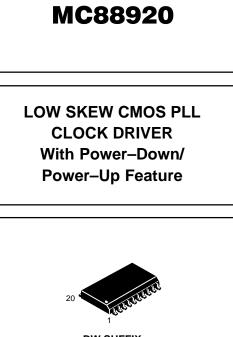
4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

## Low Skew CMOS PLL Clock Driver With Power-Down/Power-Up Feature

The MC88920 Clock Driver utilizes phase-locked loop technology to lock its low skew outputs' frequency and phase onto an input reference clock. It is designed to provide clock distribution for CISC microprocessor or single processor RISC systems. The RST\_IN/RST\_OUT(LOCK) pins provide a processor reset function designed specifically for the MC68/EC/LC030/040 microprocessor family.

The PLL allows the the high current, low skew outputs to lock onto a single clock input and distribute it with essentially zero delay to multiple locations on a board. The PLL also allows the MC88920 to multiply a low frequency input clock and distribute it locally at a higher (2X) system frequency.

- 2X\_Q Output Meets All Requirements of the 20 and 25MHz 68040 Microprocessor PCLK Input Specifications
- Three Outputs (Q0-Q2) With Output-Output Skew <500ps and Six Outputs Total (Q0–Q2, Q3, 2X\_Q,) With <1ns Skew Each Being Phase and Frequency Locked to the SYNC Input
- The Phase Variation From Part-to-Part Between SYNC and the 'Q' Outputs Is Less Than 600ps (Derived From the TPD Specification, Which Defines the Part-to-Part Skew)
- SYNC Input Frequency Range From 5MHZ to 2X\_Q F<sub>Max</sub>/4
- Additional Outputs Available at 2X and +2 the System 'Q' Frequency. Also a Q (180° Phase Shift) Output Available.
- All Outputs Have ±36mA Drive (Equal High and Low) CMOS Levels. Can Drive Either CMOS or TTL Inputs. All Inputs Are TTL-Level Compatible
- Test Mode Pin (PLL\_EN) Provided for Low Frequency Testing
- Special Power–Down Mode With 2X\_Q, Q0, and Q1 Being Reset (With MR), and Other Outputs Remain Running. 2X\_Q, Q0 and Q1 Are Guaranteed to Be in Lock 3 Clock Cycles After MR Is Negated


Three 'Q' outputs (Q0–Q2) are provided with less than 500ps skew between their rising edges. The Q3 output is inverted (180° phase shift) from the 'Q' outputs. A 2X Q output runs at twice the 'Q' output frequency. The 2X Q output is ideal for 68040 systems which require a 2X processor clock input, and it meets the tight duty cycle spec of the 20 and 25MHz 68040. The Q/2 output runs at 1/2 the 'Q' frequency. This output is fed back internally, providing a fixed 2X multiplication from the 'Q' outputs to the SYNC input. Since the feedback is done internally (no external feedback pin is provided) the input/output frequency relationships are fixed.

In normal phase-locked operation the PLL\_EN pin is held high. Pulling the PLL\_EN pin low disables the VCO and puts the 88920 in a static 'test mode'. In this mode there is no frequency limitation on the input clock, which is necessary for a low frequency board test environment.

The RST\_OUT(LOCK) pin doubles as a phase-lock indicator. When the RST\_IN pin is held high, the open drain RST\_OUT pin will be pulled actively low until phase-lock is achieved. When phase-lock occurs, the RST\_OUT(LOCK) is released and a pull-up resistor will pull the signal high. To give a processor reset signal, the RST\_IN pin is toggled low, and the RST\_OUT(LOCK) pin will stay low for 1024 cycles of the 'Q' output frequency after the RST\_IN pin is brought back high.

#### Description of the RST\_IN/RST\_OUT(LOCK) Functionality

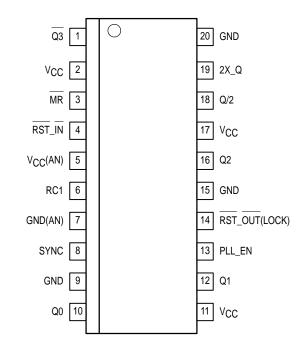
The RST\_IN and RST\_OUT(LOCK) pins provide a 68030/040 processor reset function, with the RST\_OUT pin also acting as a lock indicator. If the RST\_IN pin is held high during system power-up, the RST\_OUT pin will be in the low state until steady state phase/frequency lock to the input reference is achieved. 1024 'Q' output cycles after phase-lock is achieved the RST\_OUT(LOCK) pin will go into a high impedance\_state, allowing it to be pulled high by an external pull-up resistor (see the AC/DC specs for the characteristics of the RST\_OUT(LOCK) pin). If the RST\_IN pin is held low during power-up, the RST\_OUT(LOCK) pin will remain low.





MOTOROLA

© Motorola, Inc. 1995


Semiconductor, Inc

eescale

#### **Power–Down Mode Functionality**

The MC88920 has a special feature designed in to allow the processor clock inputs to be reset for total processor power–down, and then to return to phase–locked operation very quickly when the processor is powered–up again.

The MR pin resets outputs 2X\_Q, Q0 and Q1 only leaving the other outputs operational for other system activity. When MR is negated, all outputs will be operating normally within 3 clock cycles.



Pinout: 20-Lead Wide SOIC Package (Top View)

#### Description of the RST\_IN/RST\_OUT(LOCK) Functionality (continued)

After the system start–up is complete and the 88920 is phase–locked to the SYNC input signal (RST\_OUT high), the processor reset functionality can be utilized. When the RST\_IN\_pin is toggled low (min. pulse width=10nS), RST\_OUT(LOCK) will go to the low state and remain there for 1024 cycles of the 'Q' output frequency (512 SYNC cycles). During the time in which the RST\_OUT(LOCK) is actively pulled low, all the 88920 clock outputs will continue operating correctly and in a locked condition to the SYNC input (clock signals to the 68030/040 family of processors must continue while the processor is in reset). A propagation delay after the 1024th cycle RST\_OUT(LOCK) goes back to the high impedance state to be pulled high by the resistor.

Power Supply Ramp Rate Restriction for Correct 030/040 Processor Reset Operation During System Start–up

Because the RST OUT(LOCK) pin is an indicator of

phase-lock to the reference source, some constraints must <u>be placed</u> on the power supply ramp rate to make sure the RST\_OUT(LOCK) signal holds the processor in reset during system start-up (power-up). With the recommended loop filter values (see Figure 7) the lock time is approximately 10ms. The phase-lock loop will begin attempting to lock to a reference source (if it is present) when VCC reaches 2V. If the V<sub>CC</sub> ramp rate is significantly slower than 10ms, then the <u>PLL could</u> lock to the reference source, causing RST\_OUT(LOCK) to go high before the 88920 and '030/040 processor is fully powered up, violating the proc<u>essor reset</u> specification. Therefore, if it is necessary for the RST\_IN pin to be held high during power-up, the V<sub>CC</sub> ramp rate must be less than 10mS for proper '030/040 reset operation. \_\_\_\_

This ramp rate restriction can be ignored if the RST\_IN pin can be held low during system start-up (which holds RST\_OUT low). The RST\_OUT(LO<u>CK) pin</u> will then be pulled back high 1024 cycles after the RST\_IN pin goes high.

| Symbol          | Parameter                                                              | Value Typ                     | Unit | Test Conditions                    |
|-----------------|------------------------------------------------------------------------|-------------------------------|------|------------------------------------|
| CIN             | Input Capacitance                                                      | 4.5                           | pF   | V <sub>CC</sub> = 5.0V             |
| C <sub>PD</sub> | Power Dissipation Capacitance                                          | 40                            | pF   | V <sub>CC</sub> = 5.0V             |
| PD <sub>1</sub> | Power Dissipation at 33MHz With $50\Omega$ Thevenin Termination        | 15mW/Output<br>90mW/Device    | mW   | V <sub>CC</sub> = 5.0V<br>T = 25°C |
| PD <sub>2</sub> | Power Dissipation at 33MHz With $50\Omega$ Parallel Termination to GND | 37.5mW/Output<br>225mW/Device | mW   | $V_{CC} = 5.0V$<br>T = 25°C        |

#### CAPACITANCE AND POWER SPECIFICATIONS

#### **MAXIMUM RATINGS\***

| Symbol                             | Parameter                                        | Limits                       | Unit |
|------------------------------------|--------------------------------------------------|------------------------------|------|
| V <sub>CC</sub> , AV <sub>CC</sub> | DC Supply Voltage Referenced to GND              | -0.5 to 7.0                  | V    |
| V <sub>in</sub>                    | DC Input Voltage (Referenced to GND)             | –0.5 to V <sub>CC</sub> +0.5 | V    |
| Vout                               | DC Output Voltage (Referenced to GND)            | -0.5 to V <sub>CC</sub> +0.5 | V    |
| l <sub>in</sub>                    | DC Input Current, Per Pin                        | ±20                          | mA   |
| l <sub>out</sub>                   | DC Output Sink/Source Current, Per Pin           | ±50                          | mA   |
| ICC                                | DC V <sub>CC</sub> or GND Current Per Output Pin | ±50                          | mA   |
| T <sub>stg</sub>                   | Storage Temperature                              | -65 to +150                  | °C   |

\* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol          | Parameter                     | Limits               | Unit |
|-----------------|-------------------------------|----------------------|------|
| V <sub>CC</sub> | Supply Voltage                | 5.0 ±10%             | V    |
| V <sub>in</sub> | DC Input Voltage              | 0 to V <sub>CC</sub> | V    |
| Vout            | DC Output Voltage             | 0 to V <sub>CC</sub> | V    |
| T <sub>A</sub>  | Ambient Operating Temperature | 0 to 70              | °C   |
| ESD             | Static Discharge Voltage      | > 1500               | V    |

### DC CHARACTERISTICS (T<sub>A</sub> = 0°C to 70°C; V<sub>CC</sub> = 5.0V $\pm$ 5%)

| Symbol | Parameter                                   | Vcc          | Guaranteed Limits | Unit | Condition                                                                                           |
|--------|---------------------------------------------|--------------|-------------------|------|-----------------------------------------------------------------------------------------------------|
| VIH    | Minimum High Level Input Voltage            | 4.75<br>5.25 | 2.0<br>2.0        | V    | $V_{OUT} = 0.1V \text{ or}$<br>$V_{CC} - 0.1V$                                                      |
| VIL    | Minimum Low Level Input Voltage             | 4.75<br>5.25 | 0.8<br>0.8        | V    | $V_{OUT} = 0.1V \text{ or}$<br>$V_{CC} - 0.1V$                                                      |
| Vон    | Minimum High Level Output Voltage           | 4.75<br>5.25 | 4.01<br>4.51      | V    | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub><br>IOH –36mA<br>–36mA                          |
| VOL    | Minimum Low Level Output Voltage            | 4.75<br>5.25 | 0.44<br>0.44      | V    | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub><br>I <sub>OH</sub> +36mA <sup>1</sup><br>+36mA |
| IIN    | Maximum Input Leakage Current               | 5.25         | ±1.0              | μA   | $V_I = V_{CC}, GND$                                                                                 |
| ICCT   | Maximum I <sub>CC</sub> /Input              | 5.25         | 2.0 <b>2</b>      | mA   | $V_{I} = V_{CC} - 2.1V$                                                                             |
| IOLD   | Minimum Dynamic <sup>3</sup> Output Current | 5.25         | 88                | mA   | V <sub>OLD</sub> = 1.0V Max                                                                         |
| IOHD   | <u> </u>                                    | 5.25         | -88               | mA   | V <sub>OHD</sub> = 3.85 Min                                                                         |
| ICC    | Maximum Quiescent Supply Current            | 5.25         | 750               | μA   | $V_I = V_{CC}, GND$                                                                                 |

I<sub>OL</sub> is +12mA for the RST\_OUT output.
The PLL\_EN input pin is not guaranteed to meet this specification.

3. Maximum test duration 2.0ms, one output loaded at a time.

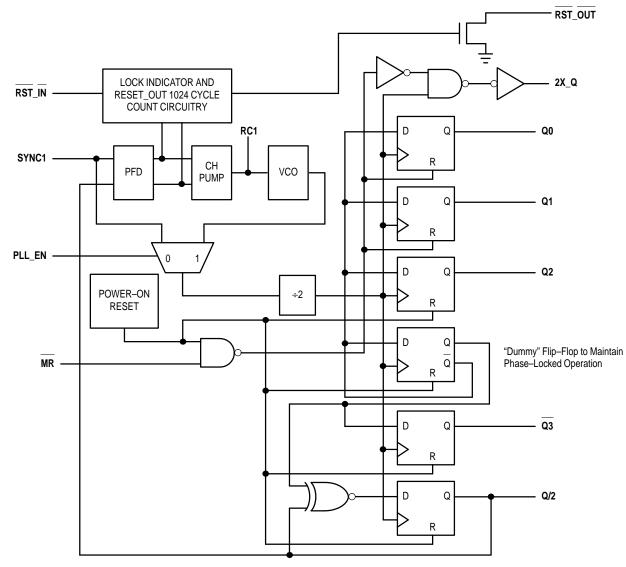



Figure 1. MC88920 Logic Block Diagram

#### SYNC INPUT TIMING REQUIREMENTS

| Symbol                                        | Parameter                                       | Minimum                  | Maximum | Unit |
|-----------------------------------------------|-------------------------------------------------|--------------------------|---------|------|
| <sup>t</sup> RISE/FALL<br>SYNC Input          | Rise/Fall Time, SYNC Input<br>From 0.8V to 2.0V | _                        | 5.0     | ns   |
| <sup>t</sup> CYCLE <sup>,</sup><br>SYNC Input | Input Clock Period<br>SYNC Input                | $\frac{1}{f_{2}X_{Q}/4}$ | 200     | ns   |
| Duty Cycle                                    | Duty Cycle, SYNC Input                          | 50% ±                    | 25%     |      |

### FREQUENCY SPECIFICATIONS (T<sub>A</sub> = 0°C to 70°C; V<sub>CC</sub> = 5.0V $\pm$ 5%)

| Symbol      | Parameter                                                  | Guaranteed Minimum | Unit |
|-------------|------------------------------------------------------------|--------------------|------|
| Fmax (2X_Q) | Maximum Operating Frequency, 2X_Q Output                   | 50                 | MHz  |
| Fmax ('Q')  | Maximu <u>m O</u> perating Frequency,<br>Q0–Q2, Q3 Outputs | 25                 | MHz  |

1. Maximum Operating Frequency is guaranteed with the 88920 in a phase-locked condition, and all outputs loaded at 50pF.

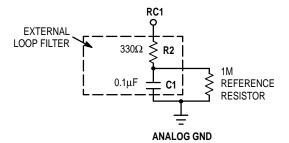
| AC CHARACTERISTICS (T <sub>A</sub> = | $0^{\circ}$ C to $70^{\circ}$ C; V <sub>CC</sub> = 5.0V $\pm$ 5%) |
|--------------------------------------|-------------------------------------------------------------------|
|--------------------------------------|-------------------------------------------------------------------|

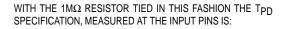
| Symbol                                                         | Parameter                                                                   | Mimimum                              | Maximum                              | Unit | Condition                                                                                         |
|----------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|------|---------------------------------------------------------------------------------------------------|
| <sup>t</sup> RISE/FALL <sup>1</sup><br>All Outputs             | Rise/Fall Time, All Outputs into $50\Omega$ Load                            | 0.3                                  | 1.6                                  | ns   | t <sub>RISE</sub> – 0.8V to 2.0V<br>t <sub>FALL</sub> – 2.0V to 0.8V                              |
| <sup>t</sup> RISE/FALL <sup>1</sup><br>2X_Q Output             | Rise/Fall Time into a 20pF Load, With<br>Termination Specified in AppNote 3 | 0.5                                  | 1.6                                  | ns   | tRISE - 0.8V to 2.0V<br>tFALL - 2.0V to 0.8V                                                      |
| <sup>t</sup> pulse width(a <mark>)1</mark><br>(Q0, Q1, Q2, Q3) | Output Pulse <u>W</u> idth<br>Q0, Q1, Q2, Q3 at V <sub>CC</sub> /2          | 0.5t <sub>cycle</sub> - 0.5 <b>5</b> | 0.5t <sub>cycle</sub> + 0.5 <b>5</b> | ns   | $50\Omega$ Load Terminated to V <sub>CC</sub> /2 (See Application Note 3)                         |
| <sup>t</sup> pulse width(b) <sup>1</sup><br>(2X_Q Output)      | Output Pulse Width<br>2X_Q at V <sub>CC</sub> /2                            | 0.5t <sub>cycle</sub> – 0.5 <b>5</b> | 0.5t <sub>cycle</sub> + 0.5 <b>5</b> | ns   | $50\Omega$ Load Terminated to V <sub>CC</sub> /2 (See Application Note 3)                         |
| t <sub>PD</sub> <b>1,4</b><br>SYNC – Q/2                       | SYNC Input to Q/2 Output Delay<br>(Measured at SYNC and Q/2 Pins)           | -0.75                                | -0.15                                | ns   | With $1M\Omega$ From RC1<br>to An V <sub>CC</sub><br>(See Application Note 2)                     |
|                                                                |                                                                             | +1.25 7                              | +3.25 <b>7</b>                       | ns   | With $1M\Omega$ From RC1<br>to An GND<br>(See Application Note 2)                                 |
| <sup>t</sup> SKEWr <b>1,2</b><br>(Rising)                      | Output–to–Output Skew<br>Between Outputs Q0–Q2, Q/2<br>(Rising Edge Only)   | _                                    | 500                                  | ps   | Into a $50\Omega$ Load<br>Terminated to V <sub>CC</sub> /2<br>(See Timing Diagram in<br>Figure 6) |
| <sup>t</sup> SKEWf <b>1,2</b><br>(Falling)                     | Output–to–Output Skew<br>Between Outputs Q0–Q2<br>(Falling Edge Only)       | _                                    | 1.0                                  | ns   | Into a $50\Omega$ Load<br>Terminated to V <sub>CC</sub> /2<br>(See Timing Diagram in<br>Figure 6) |
| <sup>t</sup> SKEWall <sup>1,2</sup>                            | Output–to–Output Skew<br><u>2X_</u> Q, Q/2, Q0–Q2 Rising<br>Q3 Falling      | _                                    | 1.0                                  | ns   | Into a $50\Omega$ Load<br>Terminated to V <sub>CC</sub> /2<br>(See Timing Diagram in<br>Figure 6) |
| <sup>t</sup> LOCK <sup>3</sup>                                 | Phase–Lock Acquisition Time,<br>All Outputs to SYNC Input                   | 1                                    | 10                                   | ms   |                                                                                                   |
| t <sub>PHL</sub> MR – Q                                        | <u>Pro</u> pagation Delay,<br>MR to Any Output (High–Low)                   | 1.5                                  | 13.5                                 | ns   | Into a 50 $\Omega$ Load Terminated to V <sub>CC</sub> /2                                          |
| t <sub>REC</sub> , MR to<br>SYNC <b>6</b>                      | Reset Recovery Time rising $\overline{MR}$ edge to falling SYNC edge        | 9                                    | —                                    | ns   |                                                                                                   |
| tREC, MR to<br>Normal Operation                                | Recovery Time for Outputs 2X_Q, Q0,<br>Q1 to Return to Normal PLL Operation | _                                    | 3 Clock Cycles<br>(Q Frequency)      | ns   |                                                                                                   |
| t <sub>W</sub> , MR LOW6                                       | Minimum Pulse Width, MR input Low                                           | 5                                    | —                                    | ns   |                                                                                                   |
| t <sub>W</sub> , RST_IN LOW                                    | Minimum Pulse Width, RST_IN Low                                             | 10                                   | —                                    | ns   | When in Phase–Lock                                                                                |
| <sup>t</sup> PZL                                               | Output Enable Time<br>RST_IN Low to RST_OUT Low                             | 1.5                                  | 16.5                                 | ns   | See Application<br>Note 5                                                                         |
| <sup>t</sup> PLZ                                               | Output Enable Time<br>RST_IN High to RST_OUT High Z                         | 1016 'Q' Cycles<br>(508 Q/2 Cycles)  | 1024 'Q' Cycles<br>(512 Q/2 Cycles)  | ns   | See Application<br>Note 5                                                                         |

1. These specifications are not tested, they are guaranteed by statistical characterization. See Application Note 1 for a discussion of this methodology.

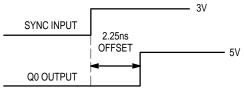
2. Under equally loaded conditions and at a fixed temperature and voltage.

3. With V<sub>CC</sub> fully powered–on:  $t_{CLOCK}$  Max is with C1 = 0.1µF;  $t_{LOCK}$  Min is with C1 = 0.01µF. 4. See Application Note 4 for the distribution in time of each output referenced to SYNC.


5. Refer to Application Note 3 to translate signals to a 1.5V threshold.


Specification is valid only when the PLL\_EN pin is low. 6.

7. This is a typical specification only, worst case guarantees are not provided.

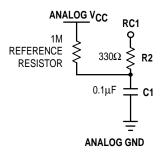

#### **Application Notes**

- 1. Several specifications can only be measured when the MC88920 is in phase-locked operation. It is not possible to have the part in phase-lock on ATE (automated test equipment). Statistical characterization techniques were used to guarantee those specifications which cannot be measured on the ATE. MC88920 units were fabricated with key transistor properties intentionally varied to create a 14 cell designed experimental matrix. IC performance was characterized over a range of transistor properties (represented by the 14 cells) in excess of the expected process variation of the wafer fabrication area. IC performance to each specification and fab variation were used to set performance limits of ATE testable specifications within those which are to be guaranteed by statistical characterization. In this way, all units passing the ATE test will meet or exceed the non-tested specifications limits.
- 2. A 1M $\Omega$  resistor tied to either Analog V<sub>CC</sub> or Analog GND, as shown in Figure 2, is required to ensure no jitter is present on the MC88920 outputs. This technique causes a phase offset between the SYNC input and the Q0 output, measured at the pins. The tpD spec describes how this offset varies with process, temperature, and voltage. The specs were arrived at by measuring the phase relationship for the 14 lots described in note 1 while the part was in phase–locked operation. The actual measurements were made with a 10MHz SYNC input (1.0ns edge rate from 0.8V to 2.0V). The phase measurements were made at 1.5V. See Figure 2 for a graphical description.
- 3. Two specs (tRISE/FALL and tPULSE Width 2X\_Q output,

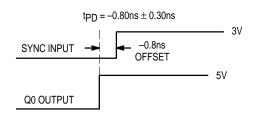


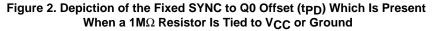







see AC Specifications) guarantee that the MC88920 meets the 20MHz and 25MHz 68040 P–Clock input specification (at 40MHz and 50MHz). For these two specs to be guaranteed by Motorola, the termination scheme shown in Figure 3 must be used. For applications which require 1.5V thresholds, but do not require a tight duty cycle the Rp resistor can be ignored.


4. The tpD spec (SYNC to Q/2) guarantees how close the Q/2 output will be locked to the reference input connected to the SYNC input (including temperature and voltage variation). This also tells what the skew from the Q/2 output on one part connected to a given reference input, to the Q/2 output on one or more parts connected to that reference input (assuming equal delay from the referenceinput to the SYNC input of each part). Therefore the tpD spec is equivalent to a part-to-part specification. However, to correctly predict the skew from a given output on one part to any other output in relation to the SYNC input must be known. This distribution for the MC88920 is provided in Table 1.


| TABLE 1. | Distribution of | <b>Each Output</b> | versus SYNC |
|----------|-----------------|--------------------|-------------|
|----------|-----------------|--------------------|-------------|

| Output    | –(ps) | +(ps) |
|-----------|-------|-------|
| 2X_Q      | TBD   | TBD   |
| Q0        | TBD   | TBD   |
| Q1        | TBD   | TBD   |
| <u>Q2</u> | TBD   | TBD   |
| Q3        | TBD   | TBD   |
| Q/2       | TBD   | TBD   |



WITH THE  $1 M \Omega$  RESISTOR TIED IN THIS FASHION THE  $T_{PD}$  Specification, measured at the input pins is:





MC88920

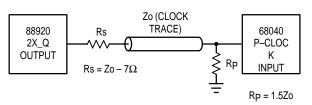



Figure 3. MC68040 P–Clock Input Termination Scheme

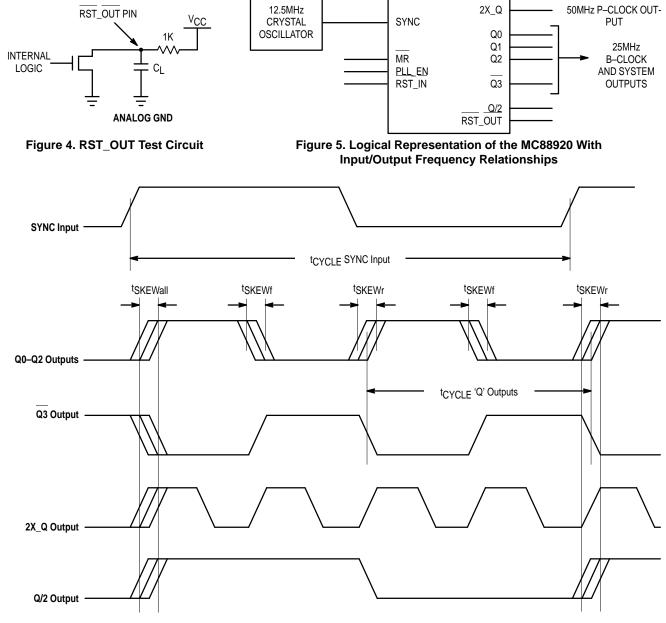



Figure 6. Output/Input Switching Waveforms and Timing Relationships

#### **Timing Notes**

- 1. The MC88920 aligns rising edges of the outputs and the SYNC input, therefore the SYNC input does not require a 50% duty cycle.
- 2. All skew specs are measured between the V<sub>CC</sub>/2 crossing point of the appropriate output edges. All skews are specified as 'windows', not as a ± deviation around a center point.

The tpD spec includes the full temperature range from 0°C to 70°C and the full V<sub>CC</sub> range from 4.75V to 5.25V. If the  $\Delta$ T and  $\Delta$ V<sub>CC</sub> is a given system are less than the specification limits, the tpD spec window will be reduced. The tpD window for a given  $\Delta$ T and  $\Delta$ V<sub>CC</sub> is given by the following regression formula:

TBD

5. The RST\_OUT pin is an open drain N–Channel output. Therefore an <u>external pull</u>-up resistor must be provide to pull up the RST\_OUT pin when it goes into the high impedance state (after the <u>MC88920</u> is phase–locked to the reference in<u>put with RST\_IN</u> held high or 1024 'Q' cycles after the RST\_IN pin goes high when the part is locked). In the tpLz and tpzL specifications, a 1KΩ resistor is used as a pull–up as shown in Figure 4.

#### Notes Concerning Loop Filter and Board Layout Issues

- 1. Figure 7 shows a loop filter and analog isolation scheme which will be effective in most applications. The following guidelines should be followed to ensure stable and jitter–free operation:
- 1a. All loop filter and analog isolation components should be tied as close to the package as possible. Stray current passing through the parasitics of long traces can cause undesirable voltage transients at the RC1 pin.
- 1b. The  $47\Omega$  resistors, the  $10\mu$ F low frequency bypass capacitor, and the  $0.1\mu$ F high frequency bypass capacitor form a wide bandwidth filter that will make the 88920 PLL insensitive to voltage transients from the system digital V<sub>CC</sub> supply and ground planes. This filter will typically ensure that a 100mV step deviation on the digital V<sub>CC</sub> supply will cause no more than a 100ps phase deviation on the 88920 outputs. A 250mV step deviation on V<sub>CC</sub> using the recommended filter values will cause no more than a 250ps phase deviation; if a 25µF bypass capacitor is used (instead of  $10\mu$ F) a 250mV V<sub>CC</sub> step will cause no more than a 100ps phase deviation.

If good bypass techniques are used on a board design near components which may cause digital V<sub>CC</sub> and ground noise, the above described V<sub>CC</sub> step deviations should not occur at the 88920's digital V<sub>CC</sub> supply. The

purpose of the bypass filtering scheme shown in Figure 7 is to give the 88920 additional protection from the power supply and ground plane transients that can occur in a high frequency, high speed digital system.

- 1c. There are no special requirements set forth for the loop filter resistors (1M and  $330\Omega$ ). The loop filter capacitor (0.1uF) can be a ceramic chip capacitor, the same as a standard bypass capacitor.
- 1d. The 1M reference resistor injects current into the internal charge pump of the PLL, causing a fixed offset between the outputs and the SYNC input. This also prevents excessive jitter caused by inherent PLL dead–band. If the VCO (2X\_Q output) is running above 40MHz, the 1M resistor provides the correct amount of current injection into the charge pump (2–3μA).
- 2. In addition to the bypass capacitors used in the analog filter of Figure 7, there should be a  $0.1\mu$ F bypass capacitor between each of the other (digital) four V<sub>CC</sub> pins and the board ground plane. This will reduce output switching noise caused by the 88920 outputs, in addition to reducing potential for noise in the 'analog' section of the chip. These bypass capacitors should also be tied as close to the 88920 package as possible.

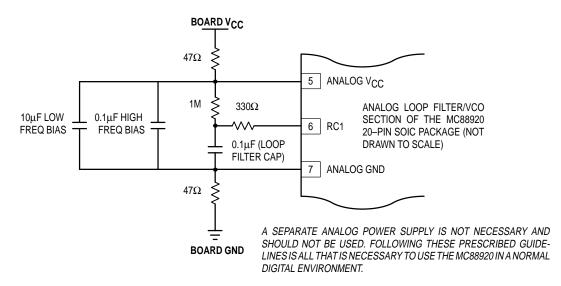



Figure 7. Recommended Loop Filter and Analog Isolation Scheme for the MC88920

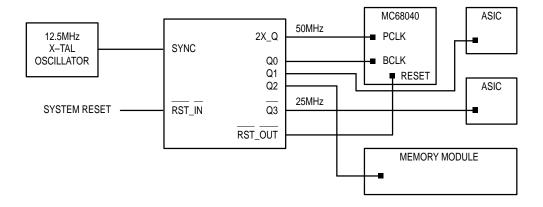
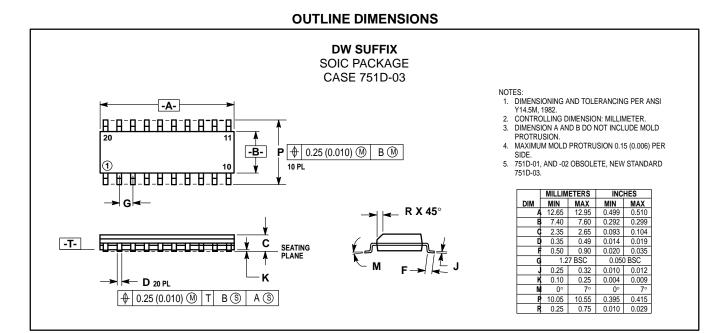




Figure 8. Typical MC88920/MC68040 System Configuration



Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized or use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

#### How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

 $\Diamond$ 

