

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

2.5/3.3V Differential LVPECL 1:9 Clock Distribution Buffer and Clock Divider

The Motorola MC100ES6226 is a bipolar monolithic differential clock distribution buffer and clock divider. Designed for most demanding clock distribution systems, the MC100ES6226 supports various applications that require a large number of outputs to drive precisely aligned clock signals. Using SiGe technology and a fully differential architecture, the device offers superior digitial signal characteristics and very low clock skew error. Target applications for this clock driver are high performance clock distribution systems for computing, networking and telecommunication systems.

Features:

- Fully differential architecture from input to all outputs
- SiGe technology supports near-zero output skew
- Selectable 1:1 or 1:2 frequency outputs
- · LVPECL compatible differential clock inputs and outputs
- LVCMOS compatible control inputs
- Single 3.3V or 2.5V supply
- Max. 35 ps maximum output skew (within output bank)
- Max. 50 ps maximum device skew
- Supports DC operation and up to 3 GHz (typ.) clock signals
- Synchronous output enable eliminating output runt pulse generation and metastability
- Standard 32 lead LQFP package
- Industrial temperature range

Functional Description

MC100ES6226 is designed for very skew critical differential clock distribution systems and supports clock frequencies from DC up to 3.0 GHz. Typical applications for the MC100ES6226 are primary clock distribution systems on backplanes of high-performance computer, networking and telecommunication systems, as well as on-board clocking of OC-3, OC-12 and OC-48 speed communication systems.

The MC100ES6226 can be operated from a 3.3V or 2.5V positive supply without the requirement of a negative supply line. Each of the output banks of three differential clock output pairs may be independently configured to distribute the input frequency or half of the input frequency. The FSEL0 and FSEL1 clock frequency selects are asychronous control inputs. Any changes of the control inputs require a MR pulse for resynchronization of the ÷2 outputs.

2.5V/3.3V DIFFERENTIAL LVPECL 1:9 CLOCK DISTRIBUTION BUFFER AND CLOCK DIVIDER

digitaldna

Figure 2. 32-Lead Package Pinout (Top View)

TABLE 1: PIN CONFIGURATION

Pin	I/O	Туре	Function			
CLK, CLK	Input	LVPECL	Differential reference clock signal input			
OE	Input	LVCMOS	Output enable			
MR	Input	LVCMOS	Device reset			
FSEL0, FSEL1	Input	LVCMOS	Output frequency divider select			
QA[0-2], <u>QA[0-2]</u> QB[0-2], <u>QB[0-2]</u> QC[0-2], QC[0-2]	Output	LVPECL	Differential clock outputs (banks A, B and C)			
GND	Supply	GND	Negative power supply			
VCC	Supply	VCC	Positive power supply. All V_{CC} pins must be connected to the positive power supply for correct DC and AC operation			

TABLE 2: FUNCTION TABLE

Control	Default	0	1
ŌĒ	0	$Qx[0-2]$, $Qx[0-2]$ are active. Deassertion of \overline{OE} can be asynchronous to the reference clock without generation of output runt pulses	$Qx[0-2] = L, \overline{Qx[0-2]} = H$ (outputs disabled). Assertion of OE can be asynchronous to the reference clock without generation of output runt pulses
MR	0	Normal operation	Device reset (asynchronous)
FSEL0, FSEL1	00	See Following Table	

TABLE 3: Output Frequency Select Control

FSEL0	FSEL1	QA0 to QA2	QB0 to QB2	QC0 to QC2
0	0	fQA0:2 = fCLK	fQB0:2 = fCLK	fQC0:2 = fCLK
0	1	fQA0:2 = fCLK	$f_{QB0:2} = f_{CLK}$	$f_{QC0:2} = f_{CLK} \div 2$
1	0	fQA0:2 = fCLK	$f_{QB0:2} = f_{CLK} \div 2$	$f_{QC0:2} = f_{CLK} \div 2$
1	1	$f_{QA0:2} = f_{CLK} \div 2$	$f_{QB0:2} = f_{CLK} \div 2$	$f_{QC0:2} = f_{CLK} \div 2$

TABLE 4: ABSOLUTE MAXIMUM RATINGS^a

Symbol	Characteristics	Min	Max	Unit	Condition
VCC	Supply Voltage	-0.3	3.6	V	
VIN	DC Input Voltage	-0.3	V _{CC} +0.3	V	
VOUT	DC Output Voltage	-0.3	V _{CC} +0.3	V	
IIN	DC Input Current		±20	mA	
IOUT	DC Output Current		±50	mA	
ΤS	Storage temperature	-65	125	°C	

a. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

TABLE 5: GENERAL SPECIFICATIONS

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
VTT	Output termination voltage		V _{CC} - 2 ^a		V	
MM	ESD Protection (Machine model)	200			V	
HBM	ESD Protection (Human body model)	2000			V	
CDM	ESD Protection (Charged device model)	1000			V	
LU	Latch-up immunity	200			mA	
CIN			4.0		pF	Inputs
ΑL ^θ	Thermal resistance junction to ambient JESD 51-3, single layer test board JESD 51-6, 2S2P multilayer test board		83.1 73.3 68.9 63.8 57.4 59.0 54.4 52.5 50.4 47.8	86.0 75.4 70.9 65.3 59.6 60.6 55.7 53.8 51.5 48.8	°C/W °C/W °C/W °C/W °C/W °C/W °C/W °C/W	Natural convection 100 ft/min 200 ft/min 400 ft/min 800 ft/min Natural convection 100 ft/min 200 ft/min 400 ft/min 800 ft/min
θJC	Thermal resistance junction to case		23.0	26.3	°C/W	MIL-SPEC 883E Method 1012.1
	Operating junction temperature ^b (continuous operation) MTBF = 9.1 years	0		110	°C	

a. Output termination voltage V_{TT} = 0V for V_{CC} = 2.5V operation is supported but the power consumption of the device will increase.
b. Operating junction temperature impacts device life time. Maximum continuous operating junction temperature should be selected according to the application life time requirements (See application note AN1545 for more information). The device AC and DC parameters are specified up to 110°C junction temperature allowing the MC100ES6226 to be used in applications requiring industrial temperature range. It is recommended that users of the MC100ES6226 employ thermal modeling analysis to assist in applying the junction temperature specifications.

Symbol	Characteristics	Min	Тур	Max	Unit	Condition		
LVCMOS control inputs (OE, FSEL0, FSEL1, MR)								
VIL	Input voltage low $V_{CC} = 3.3 V$ $V_{CC} = 2.5 V$			0.8 0.7	V			
VIH	Input voltage high $V_{CC} = 3.3 V$ $V_{CC} = 2.5 V$	2.2 1.7			V			
IIN	Input Current ^b			±150	μΑ	$V_{IN} = V_{CC} \text{ or } V_{IN} = GND$		
LVPECL	. clock inputs (CLK, CLK) ^C							
V _{PP}	DC differential input voltaged	0.1		1.3	V	Differential operation		
VCMR	Differential cross point voltage ^e	1.0		V _{CC} -0.3	V	Differential operation		
VIH	Input high voltage	TBD		TBD				
VIL	Input low voltage	TBD		TBD				
IIN	Input Current			±150	μΑ	V_{IN} = TBD or V_{IN} = TBD		
LVPECL	. clock outputs (QA[2:0], QB[2:0], QC[2:0])						
Vон	Output High Voltage	V _{CC} -1.1		V _{CC} -0.8	V	Termination 50 Ω to VTT		
VOL	Output Low Voltage	V _{CC} -1.8		V _{CC} -1.4	V	Termination 50 Ω to V _{TT}		
Supply current								
IGND	Maximum Quiescent Supply Current without output termination current		65	110	mA	GND pin		
ICC	Maximum Quiescent Supply Current with output termination current		325	400	mA	All V _{CC} Pins		

TABLE 6: DC CHARACTERISTICS (V_{CC} = 3.3V \pm 5% and 2.5V \pm 5%, T_J = 0°C to +110°C)a

a. AC characterisitics are design targets and pending characterization.

b. Input have internal pullup/pulldown resistors which affect the input current.

c. Clock inputs driven by LVPECL compatible signals.

d. VPP is the minimum differential input voltage swing required to maintain AC characteristic.

e. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
Vpp	Differential input voltage ^C (peak-to-peak)	0.2	0.3	1.3	V	
VCMR	Differential input crosspoint voltaged	1.0		V _{CC} -0.3	V	
VX,OUT	Differential output crosspoint voltage	V _{CC} -1.45		V _{CC} -1.1	V	
V _{O(P-P)}	Differential output voltage (peak-to-peak) f _O < 300 MHz f _O < 1.5 GHz f _O < 2.7 GHz	0.45 0.3 TBD	0.72 0.55 0.37	0.95 0.95 0.95	V V V	
^f CLK	Input Frequency	0		3000 ^e	MHz	
tPD	Propagation Delay CLK to Qx[]	475	500	800	ps	Differential
^t sk(O)	Output-to-output skew (within QA[2:0]) (within QB[2:0]) (within QC[2:0]) (within device)		11 12 4	25 25 20 60	ps ps ps ps	Differential
^t sk(PP)	Output-to-output skew (part-to-part)			325	ps	Differential
^t JIT(CC)	Output cycle-to-cycle jitter single frequency configuration ÷1/÷2 frequency configuration			TBD TBD		FSEL0 = FSEL1 FSEL0 ≠ FSEL1
DCO	$\begin{array}{llllllllllllllllllllllllllllllllllll$	48 45 49	50 50 50	52 55 51	% % %	DC _{fref} = 50%
	$Qx = \div 2$, $f_O > 300 \text{ MHz}$	47.5	50	52.5	%	
t _r , t _f	Output Rise/Fall Time	0.05		200	ns	20% to 80%
^t PDL ^f	Output disable time	2.5·T + tPD		4.5 T + tPD	ns	T=CLK period
tPLD ^g	Output enable time	3·T + tPD		5·T + tPD	ns	T=CLK period

TABLE 7: AC CHARACTERISTICS (V_{CC} = $3.3V \pm 5\%$ and $2.5V \pm 5\%$, T_J = 0°C to +110°C)^{a b}

a. AC characterisitics are design targets and pending characterization.

b. AC characteristics apply for parallel output termination of 50Ω to V_{TT}.

c. Vpp is the minimum differential input voltage swing required to maintain AC characteristics including tpd and device-to-device skew.

d. V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} (AC) range and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} (AC) or V_{PP} (AC) impacts the device propagation delay, device and part-to-part skew.

e. The MC100ES6226 is fully operational up to 3.0 GHz and is characterized up to 2.7 GHz.

f. Propagation delay <u>OE</u> deassertion to differential output disabled (differential low: true output low, complementary output high).

g. Propagation delay OE assertion to output enabled (active).

Figure 3. MC100ES6226 output disable/enable timing

Figure 4. MC100ES6226 AC test reference

APPLICATIONS INFORMATION

Maintaining Lowest Device Skew

The MC100ES6226 guarantees low output-to-output bank skew of 35 ps and a part-to-part skew of max. TBD ps. To ensure low skew clock signals in the application, both outputs of any differential output pair need to be terminated identically, even if only one output is used. When fewer than all nine output pairs are used, identical termination of all output pairs within the output bank is recommended. If an entire output bank is not used, it is recommended to leave all of these outputs open and unterminated. This will reduce the device power consumption while maintaining minimum output skew.

Power Supply Bypassing

The MC100ES6226 is a mixed analog/digital product. The differential architecture of the MC100ES6226 supports low noise signal operation at high frequencies. In order to maintain its superior signal quality, all V_{CC} pins should be bypassed by high-frequency ceramic capacitors connected

to GND. If the spectral frequencies of the internally generated switching noise on the supply pins cross the series resonant point of an individual bypass capacitor, its overall impedance begins to look inductive and thus increases with increasing frequency. The parallel capacitor combination shown ensures that a low impedance path to ground exists for frequencies well above the noise bandwidth.

Figure 5. V_{CC} Power Supply Bypass

MC100ES6226

NOTES

MC100ES6226

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. MOTOROLA and the Wotorola are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners.

© Motorola, Inc. 2001.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

