阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

June 1998 Revised December 2000

GTLP6C816 GTLP/TTL 1:6 Clock Driver

General Description

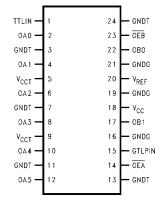
The GTLP6C816 is a clock driver that provides TTL to GTLP signal level translation (and vice versa). The device provides a high speed interface between cards operating at TTL logic levels and a backplane operating at GTLP logic levels. High speed backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transceiver logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is process, voltage, and temperature (PVT) compensated. Its function is similar to BTL and GTL but with different output levels and receiver threshold. GTLP output LOW level is typically less than 0.5V, the output level HIGH is 1.5V and the receiver threshold is 1.0V.

Features

- Interface between LVTTL and GTLP logic levels
- Designed with edge rate control circuitry to reduce output noise on the GTLP port
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of precess, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced CMOS technology
- Bushold data inputs on A port to eliminate the need for external pull-up resistors for unused inputs
- Power up/down and power off high impedance for live insertion
- 5V over voltage tolerance on LVTTL ports
- Open drain on GTLP to support wired-or connection
- A Port source/sink -24mA/+24mA
- B Port sink +50mA
- 1:6 fanout clock driver for TTL port
- 1:2 fanout clock driver for GTLP port

Ordering Code:


Order Number	Package Number	Package Description				
GTLP6C816MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				

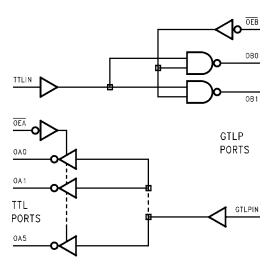
Device also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Pin Descriptions

Pin Names	Description
TTLIN, GTLPIN	Clock Inputs (TTL and GTLP respectively)
OEB	Output Enable (Active LOW) GTLP Port (TTL Levels)
ŌĒĀ	Output Enable (Active LOW) TTL Port (TTL Levels)
V _{CCT} .GNDT	TTL Output Supplies (5V)
V _{CC}	Internal Circuitry V _{CC} (5V)
GNDG	OBn GTLP Output Grounds
V_{REF}	Voltage Reference Input
OA0-OA5	TTL Buffered Clock Outputs
OB0-OB1	GTLP Buffered Clock Outputs

Connection Diagram

Functional Description


The GTLP6C816 is a clock driver providing TTL-to-GTLP clock translation, and GTLP-to-TTL clock translation in the same package. The TTL-to-GTLP direction is a 1:2 clock driver path with a single Enable pin (OEB). For the GTLP-to-TTL direction the clock receiver path is a 1:6 buffer with a single Enable control (OEA). Data polarity is inverting for both directions.

Truth Tables

Inpu	ts	Outputs		
TTLIN	OEB OBn			
Н	L	L		
L	L	Н		
Х	Н	High Z		

Inputs		Outputs
GTLPIN	OEA	OAn
Н	L	L
L	L	Н
Х	Н	High Z

Logic Diagram

-40°C to +85°C

Absolute Maximum Ratings(Note 1) **Recommended Operating** Conditions (Note 3) -0.5V to +7.0V Supply Voltage (V_{CC})

DC Input Voltage (V_I) -0.5V to +7.0V Supply Voltage V_{CC} 4.75V to 5.25V

DC Output Voltage (V_O) Bus Termination Voltage (V_{TT})

Outputs 3-STATE -0.5V to +7.0V**GTLP** 1.47V to 1.53V Outputs Active (Note 2) -0.5V to +7.0V V_{REF} 0.98V to 1.02V

DC Output Sink Current into Input Voltage (V_I) on INA Port

OA Port I_{OL} 48 mA and Control Pins 0.0V to 5.5V

DC Output Source Current HIGH Level Output Current (I_{OH})

from OA Port IOH -48 mA OA Port -24 mA

DC Output Sink Current into LOW Level Output Current (IOL)

OB Port in the LOW State I_{OL} 80 mA OA Port +24 mA

DC Input Diode Current (I_{IK}) OB Port +34 mA

 $V_I < 0V$ Operating Temperature (T_A) -50 mA DC Output Diode Current (I_{OK})

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not

+50 mA **ESD** Rating > 2000V Note 2: I_o Absolute Maximum Rating must be observed. Storage Temperature (T_{STG}) -65°C to +150°C Note 3: Unused input must be held HIGH or LOW.

-50 mA

DC Electrical Characteristics

 $V_O < 0V$

 $V_{O} > V_{CC}$

Over Recommended Operating Free-Air Temperature Range, $V_{REF} = 1.0V$ (unless otherwise noted).

	Symbol	Test C	onditions	Min	Typ (Note 4)	Max	Units
V _{IH}	GTLPIN			V _{REF} +0.05		V _{TT}	V
	Others			2.0			V
V _{IL}	GTLPIN			0.0		V _{REF} -0.05	
	Others					0.8	V
V _{REF}	GTLP				1.0		V
(Note 5)	GTL				0.8		V
V _{TT}	GTLP				1.5		V
(Note 5)	GTL				1.2		V
V _{IK}		V _{CC} = 4.75V	$I_{I} = -18 \text{ mA}$			-1.2	V
V _{OH}	OAn Port	V _{CC} = 4.75V	$I_{OH} = -100 \mu A$	V _{CC} -0.2			V
			$I_{OH} = -18 \text{ mA}$	2.4			
			$I_{OH} = -24 \text{ mA}$	2.2			
V _{OL}	OAn Port	V _{CC} = 4.75V	$I_{OL} = 100 \mu A$		0.2	0.2	٧
			I _{OL} = 18 mA			0.4	
			I _{OL} = 24 mA			0.5	
V _{OL}	OBn Port	V _{CC} = 4.75V	$I_{OL} = 100 \mu A$			0.2	V
			I _{OL} = 34 mA			0.65	V
l _l	TTLIN/	V _{CC} = 5.25V	V _I = 5.25V			5	μА
	Control Pins		$V_I = 0V$			-5	μΛ
	GTLPIN	V _{CC} = 5.25V	$V_I = V_{TT}$			5	^
			$V_I = 0$			-5	μА
I _{OFF}	TTLIN	V _{CC} = 0	V_{I} or $V_{O} = 0V$ to 5.25V			100	μА
I _{OZH}	OAn Port	V _{CC} = 5.25V	V _O = 5.25V			5	
	OBn Port		V _O = 1.5V			5	μА
I _{OZL}	OAn Port	V _{CC} = 5.25V	$V_O = 0$			-5	μА
I _{CC}	OAn or	V _{CC} = 5.25V	Outputs HIGH		7	18	
	OBn Ports		Outputs LOW		7	20	mA
		$V_I = V_{CC}$ or GND	Outputs Disabled		7	20	
ΔI_{CC}	TTLIN	V _{CC} = 5.25V	$V_{I} = V_{CC} - 2.1$			6	mA

DC Electrical Characteristics (Continued)

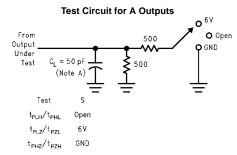
	Symbol	Test Conditions	Min	Typ (Note 4)	Max	Units
C _{IN}	Control Pins/GTLPIN/ TTLIN	$V_I = V_{CC}$ or 0		3.7		pF
C _{OUT}	OAn Port	$V_I = V_{CC}$ or 0		7		pF
	OBn Port	$V_I = V_{CC}$ or 0		7		ρi

Note 4: All typical values are at $V_{CC} = 5.0 V$ and $T_A = 25 ^{\circ} C$.

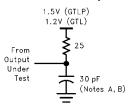
Note 5: GTLP V_{REF} and V_{TT} are specified to 2% tolerance since signal integrity and noise margin can be significantly degraded if these supplies are noisy. In addition, V_{TT} and R_{TERM} can be adjusted to accommodate backplane impedances other than 50Ω , within the boundaries of not exceeding the DC Absolute I_{OL} ratings. Similarly V_{REF} can be adjusted to compensate for changes in V_{TT} .

AC Electrical Characteristics

Over recommended range of supply voltage and operating free air temperature. $V_{REF} = 1.0V$ (unless otherwise noted).

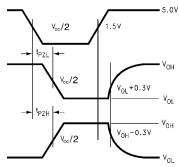

 $C_L = 30$ pF for OBn Port and $C_L = 50$ pF for OAn Port.

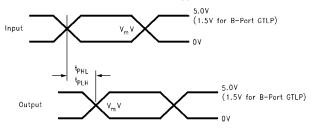
Symbol	From	То	Min	Тур	Max	Units
	(Input)	(Output)		(Note 6)		UnitS
t _{PLH}	TTLIN	OBn	1.5	3.8	6.0	ns
t _{PHL}			1.5	2.8	5.0	115
t _{PLH}	ŌEB	OBn	1.5	6.4	10.5	
t _{PHL}			1.5	3.2	6.0	ns
t _{RISE}	Transition Time, OB 0	Transition Time, OB Outputs (20% to 80%)		2.3		ns
t _{FALL}	Transition Time, OB		2.3		ns	
t _{RISE}	Transition Time, OA		2.0		ns	
t _{FALL}	Transition Time, OA		2.0		ns	
t _{PZH} , t _{PZL}	OEA	OAn	0.5	3.6	6.5	
t_{PLZ} , t_{PHZ}			0.5	3.8	6.5	ns
t _{PLH}	GTLPIN	OAn	1.5	4.4	6.5	
t _{PHL}			1.5	4.0	6.0	ns
t _{OSHL} , t _{OSLH} (Note 7)	Common E		0.2	1.0	ns	


Note 6: All typical values are at $V_{CC} = 5.0 V$ and $T_A = 25 ^{\circ} C$.

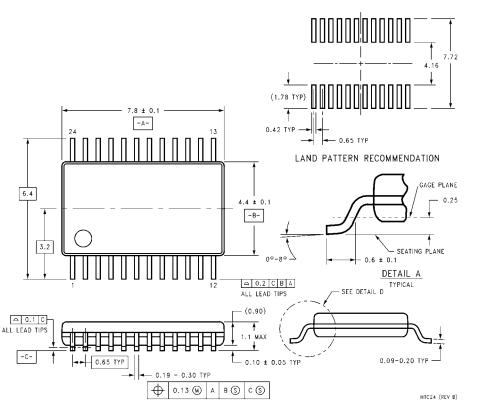
Note 7: Skew specs are given for specific worst case V_{CC} Temp. Skew values between the OBn outputs could vary on the backplane due to loading and impedance seen by the device.

Test Circuit and Timing Waveforms


Test Circuit for B Outputs


Note A: C_L includes probes and jig capacitance.

Note A: C_L includes probes and jig capacitance. Note B: For B Port $C_L=30\ pF$ is used for worst case.


Voltage Waveforms Enable and Disable Times A Port

Voltage Waveforms Propagation Delay ($V_m = V_{CC}/2$ for A Port and 1.0 for B Port)

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC24

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com