

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

FAIRCHILD

SEMICONDUCTOR TM

GTLP6C817 Low Drive GTLP/LVTTL 1:6 Clock Driver

General Description

The GTLP6C817 is a low drive clock driver that provides TTL to GTLP signal level translation (and vice versa). The device provides a high speed interface between cards operating at TTL logic levels and a backplane operating at GTLP logic levels. High speed backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transceiver logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is process, voltage, and temperature (PVT) compensated. Its function is similar to BTL and GTL but with different output levels and receiver threshold. GTLP output LOW level is typically less than 0.5V, the output level HIGH is 1.5V and the receiver threshold is 1.0V.

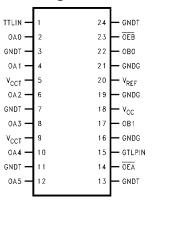
Features

- Interface between LVTTL and GTLP logic levels
- Designed with edge rate control circuitry to reduce output noise on the GTLP port

June 1999

Revised December 2000

- V_{REF} pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced CMOS technologyBushold data inputs on A port to eliminate the need for
- external pull-up resistors for unused inputs
 Power up/down and power off high impedance for live insertion
- 5V over voltage tolerance on LVTTL ports
- Open drain on GTLP to support wired-or connection
- A Port source/sink –12mA/+12mA
- B Port sink +40mA
- 1:6 fanout clock driver for TTL port
- 1:2 fanout clock driver for GTLP port


Ordering Code:

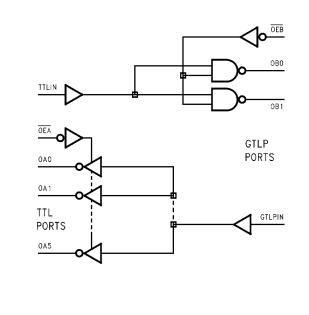
Order Number	Package Number	Package Description
GTLP6C817MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Device is also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Pin Descriptions

Pin Names	Description		
TTLIN, GTLPIN	Clock Inputs (TTL and GTLP respectively)		
OEB	Output Enable (Active LOW) GTLP Port (TTL Levels)		
OEA	Output Enable (Active LOW) TTL Port (TTL Levels)		
V _{CCT} .GNDT	LVTTL Output Supplies (3V)		
V _{CC}	Internal Circuitry V _{CC} (5V)		
GNDG	OBn GTLP Output Grounds		
V _{REF}	Voltage Reference Input		
OA0–OA5	TTL Buffered Clock Outputs		
OB0–OB1	GTLP Buffered Clock Outputs		
	•		

Connection Diagram

© 2000 Fairchild Semiconductor Corporation DS500246


Functional Description

The GTLP6C817 is a low drive clock driver providing LVTTL-to-GTLP clock translation, and GTLP-to-LVTTL clock translation in the same package. The LVTTL-to-GTLP direction is a 1:2 clock driver path with a single Enable pin (OEB). For the GTLP-to-LVTTL direction the clock receiver path is a 1:6 buffer with a single Enable control (OEA). Data polarity is inverting for both directions.

Truth Tables

Inpu	ts	Outputs		
TTLIN	OEB	OBn		
Н	L	L		
L	L	н		
Х	Н	High Z		
Inpu	ts	Outputs		
Inpu GTLPIN	ts OEA	Outputs OAn		
		-		
GTLPIN		OAn		

Logic Diagram

Absolute Maximum Ratings(Note 1)

		C
Supply Voltage (V _{CC})	-0.5V to +7.0V	C
DC Input Voltage (VI)	-0.5V to +7.0V	
DC Output Voltage (V _O)		
Outputs 3-STATE	-0.5V to +7.0V	
Outputs Active (Note 2)	-0.5V to +7.0V	
DC Output Sink Current into		
OA Port I _{OL}	24 mA	
DC Output Source Current		
from OA Port I _{OH}	–24 mA	
DC Output Sink Current into		
OB Port in the LOW State I _{OL}	80 mA	
DC Input Diode Current (IIK)		
V ₁ < 0V	–50 mA	
DC Output Diode Current (I _{OK})		
V _O < 0V	–50 mA	
$V_{O} > V_{CC}$	+50 mA	N
ESD Rating	> 2000V	wl cc
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	Fu
		N

Recommended Operating Conditions (Note 3) Supply Voltage 4.75V to 5.25V V_{CC} 3.15V to 3.45V V_{CCT} Bus Termination Voltage (V_{TT}) GTLP 1.47V to 1.53V 0.98V to 1.02V V_{REF} Input Voltage (VI) on INA Port and Control Pins 0.0V to 5.5V HIGH Level Output Current (I_{OH}) OA Port –12 mA LOW Level Output Current (I_{OL}) OA Port +12 mA OB Port +40 mA Operating Temperature (T_A) -40°C to +85°C

GTLP6C817

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 2: I_o Absolute Maximum Rating must be observed.

Note 3: Unused input must be held HIGH or LOW.

DC Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range, $V_{REF} = 1.0V$ (unless otherwise noted).

	Symbol	Tes	t Conditions	Min	Typ (Note 4)	Max	Units
VIH	GTLPIN			$V_{REF} + 0.05$		V _{TT}	V
	Others			2.0			v
VIL	GTLPIN			0.0		$V_{REF} - 0.05$	V
	Others					0.8	v
V _{REF}	GTLP				1.0		V
(Note 5)	GTL				0.8		v
V _{TT}	GTLP			1.5			V
(Note 5)	GTL				1.2		V
V _{IK}		V _{CC} = 4.75V V _{CCT} = 3.15V	I _I = -18 mA			-1.2	V
V _{OH}	OAn Port	$V_{CC} = 4.75V$	I _{OH} = -100 μA	V _{CC} - 0.2			
		V _{CCT} = 3.15V	I _{OH} = -6 mA	2.4			V
			I _{OH} = -12 mA	2.2			
V _{OL}	OAn Port	$V_{CC} = 4.75V$	I _{OL} = 100 μA			0.2	
		V _{CCT} = 3.15V	I _{OL} = 6 mA			0.4	V
			I _{OL} = 12 mA			0.5	
V _{OL}	OBn Port	$V_{CC} = 4.75V$	I _{OL} = 100 μA			0.2	V
		$V_{CCT} = 3.15V$	I _{OL} = 40 mA			0.5	v
l _l	TTLIN/	$V_{CC} = 5.25V$	$V_{I} = 5.25V$			5	μA
	Control Pins	$V_{CCT} = 3.45V$	$V_I = 0V$			-5	μА
	GTLPIN	$V_{CC} = 5.25V$	$V_I = V_{TT}$			5	μA
		$V_{CCT} = 3.45V$	$V_I = 0$			-5	μΑ
I _{OFF}	TTLIN, OAn Port, Control Pins	$V_{CC} = 0$	V_{I} or $V_{O} = 0V$ to 5.25V			30	μA
	GTLPIN, OBn Port	$V_{CCT} = 0$	V_{I} or $V_{O} = 0$ to V_{TT}			30	μА
I _{OZH}	OAn Port	$V_{CC} = 5.25V$	V _O = 5.25V			5	μA
	OBn Port	$V_{CCT} = 3.45V$	V _O = 1.5V			5	μΑ
I _{OZL}	OAn Port	$V_{CC} = 5.25V$	V _O = 0			-5	μA
	OBn Port	V _{CCT} = 3.45V	$V_0 = 0$			-5	μА

www.fairchildsemi.com

GTLP6C817

DC Electrical Characteristics (Continued)

Symbol		Test Conditions		Min	Typ (Note 4)	Мах	Units
I _{PU/PD}	All Ports	$V_{CC} = V_{CCT} = 0$ to 1.5V	OE = Don't Care			30	μΑ
I _{CC} (5V)	OAn or	V _{CC} = 5.25V	Outputs HIGH			10	
	OBn Ports	$V_{CCT} = 3.45V$	Outputs LOW			10	mA
			Outputs Disabled $V_I = V_{CC}$ or GND			10	
I _{CC} (3V)	OAn or	$V_{CC} = 5.25V$	Outputs HIGH, LOW			45	
	OBn Ports	V _{CCT} = 3.45V	Outputs Disabled $V_I = V_{CC}$ or GND			45	μA
7I ^{CC}	TTLIN	V _{CC} = 5.25V V _{CCT} = 3.45V	V _I = V _{CC} -2.1			1	mA
C _{IN}	Control Pins/GTLPIN/TTLIN		$V_I = V_{CC} \text{ or } 0$		3	3.5	pF
Cout	OAn Port		$V_I = V_{CC} \text{ or } 0$		3	4.5	pF
	OBn Port		$V_{I} = V_{CC} \text{ or } 0$		4	5	pr

Note 4: All typical values are at V_{CC} = 5.0V V_{CCT} = 3.3V and T_A = 25^{\circ}C.

Note 5: GTLP V_{REF} and V_{TT} are specified to 2% tolerance since signal integrity and noise margin can be significantly degraded if these supplies are noisy. In addition, V_{TT} and R_{TERM} can be adjusted to accommodate backplane impedances other than 50 Ω , within the boundaries of not exceeding the DC Absolute I_{OL} ratings. Similarly V_{REF} can be adjusted to compensate for changes in V_{TT} .

AC Electrical Characteristics

Over recommended range of supply voltage and operating free air temperature. $V_{REF} = 1.0V$ (unless otherwise noted). $C_L = 30 \text{ pF}$ for OBn Port and $C_L = 50 \text{ pF}$ for OAn Port.

0	From	То	Min	Тур	Max	Unite
Symbol	(Input)	(Output)		(Note 6)		Units
t _{PLH}	TTLIN	OBn	2.3		4.7	
t _{PHL}			1.5		4.6	ns
t _{PLH}	OEB	OBn	2.4		4.8	
t _{PHL}			1.6		4.7	ns
t _{RISE}	Transition Time, OB	Outputs (20% to 80%)		1.7		ns
t _{FALL}	Transition Time, OB		2.1		ns	
t _{RISE}	Transition Time, OA		2.7		ns	
t _{FALL}	Transition Time, OA	outputs (10% to 90%)		2.2		ns
t _{PZH} , t _{PZL}	OEA	OAn	2.4		6.5	
t _{PLZ} , t _{PHZ}			2.0		6.5	ns
t _{PLH}	GTLPIN	OAn	3.1		6.6	20
t _{PHL}			2.8		6.0	ns

Note 6: All typical values are at V_{CC} = 5.0V and T_A = 25°C.

Extended Electrical Characteristics

Over recommended ranges of supply voltage and operating free-air temperature $V_{REF} = 1.0V$ (unless otherwise noted). C₁ = 30 pF for B Port and C₁ = 50 pF for A Port.

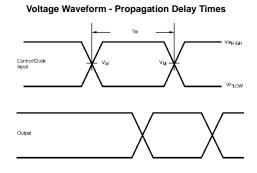
G
-
D
စ္ဆ
n
œ

Sy	vmbol	From (Input)	To (Output)	Min	Typ (Note 7)	Max	Unit
t _{OSLH}	(Note 8)	А	В		.05	.4	20
t _{OSHL}	(Note 8)	А	В		.05	.4	ns
t _{PS}	(Note 9)	А	В		0.5	1.0	ns
t _{PV(HL)}	(Note 10) (Note 11)	А	В			.7	ns
t _{OSLH}	(Note 8)	В	A		.12	.5	
t _{OSHL}	(Note 8)	В	A		.12	.5	ns
t _{OST}	(Note 8)	В	A		.6	1.0	ns
t _{PS}	(Note 9)	В	A		0.5	1.0	ns
t _{PV}	(Note 10)	В	А			1.2	ns

Note 7: All typical values are at V_{CC} = 5.0V and T_A = 25°C.

Note 8: t_{OSHL}/t_{OSLH} and t_{OST} - Output-to-Output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs within the same packaged device. The specifications are given for specific worst case V_{CC} and temperature and apply to any outputs witching in the same direction either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}) or in opposite directions both HL and LH (t_{OST}). This parameter is guaranteed by design and statistical process distribution. Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.

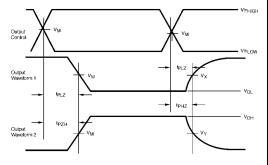
Note 9: t_{PS} - Pin or Transition skew is defined as the difference between the LOW-to-HIGH transition and the HIGH-to-LOW transition on the same pin. The parameter is measured across all the outputs of the same chip is specified for a specific worst case V_{CC} and temperature. This parameter is guaranteed by design and statistical process distribution. Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.


Note 10: t_{PV} - Part-to-Part skew is defined as the absolute value of the difference between the actual propagation design for all outputs from device-todevice. The parameter is specified for a specific worst case V_{CC} and temperature. This parameter is guaranteed by design and statistical process distribution. Actual skew values between the GTLP output could vary on the backplane due to the loading and impedance seen by the device.

Note 11: Due to the open drain structure on GTLP outputs, t_{OST} and $t_{PV(LH)}$ in the A-to-B direction are not specified. Skew on these paths is dependent on the V_{TT} and R_T values in the actual application.

GTLP6C817

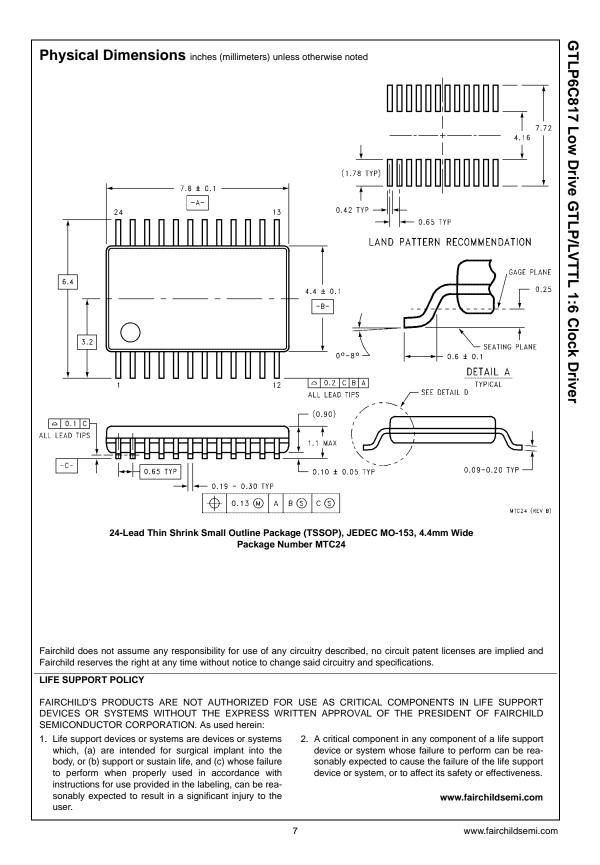
Test Circuit and Timing Waveforms Test Circuit for A Outputs **o** 6V From O Oper 500 Output Under O GND ~~ $C_L = 50 \, pF$ Test 500 (Note A) Test s $t_{\rm PLH}/t_{\rm PHL}$ Open t_{PLZ}/t_{PZL} 6V GND t_{PHZ}/t_{PZH}


Note A: C_L includes probes and jig capacitance.

From Under Test Circuit for B Outputs 1.5V (GTLP) 1.2V (GTL) 25 25 (Notes A, B)

Note A: C_L includes probes and jig capacitance. Note B: For B Port C_L = 30 pF is used for worst case.

Voltage Waveform - Enable and Disable Times



Output Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the control output Output Waveforms 2 is for an output with internal conditions such that the output is HIGH except when disabled by the control output

Input and Measure Conditions

	A or LVTTL Pins	B or GTLP Pins
V _{inHIGH}	V _{CC}	1.5
V _{inLOW}	0.0	0.0
V _M	V _{CC} /2	1.0
V _X	V _{OL} + 0.3V	N/A
V _Y	V _{OH} + 0.3V	N/A

All input pulses have the following characteristics: Frequency = 10MHz, $t_{RISE} = t_{FALL} = 2 \text{ ns}$, $Z_O = 50\Omega$. The outputs are measured one at a time with one transition per measurement.

