

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

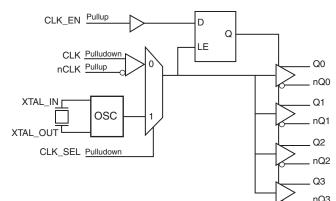
ICS8533I-31

General Description

The ICS8533I-31 is a low skew, high performance 1-to-4 Crystal Oscillator/Differential-to-3.3V LVPECL Fanout Buffer and a member of the HiPerClockS[™] family of High Performance Clock Solutions from IDT. The ICS8533I-31 has selectable

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/


differential clock or crystal inputs. The CLK, nCLK pair can accept most standard differential input levels. The clock enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin.

Guaranteed output and part-to-part skew characteristics make the ICS8533I-31 ideal for those applications demanding well defined performance and repeatability.

Features

- Four differential LVPECL output pairs
- Selectable differential CLK/nCLK or crystal oscillator interface
- Maximum output frequency: 650MHz
- Translates any single-ended input signal to 3.3V LVPECL levels with resistor bias on nCLK input
- Additive phase jitter, RMS: TBD
- Output skew: 25ps (typical)
- Part-to-part skew: 150ps (typical)
- Propagation delay: 1.5ns (typical)
- Full 3.3V supply mode
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Block Diagram

Pin Assignment

			-
VEE	1	20	
CLK_EN□	2	19	nQ0 🗆
CLK_SEL	3	18	Vcc
CLK	4	17	🛛 Q1
nCLK	5	16	□nQ1
XTAL_IN□	6	15	🗆 Q2
XTAL_OUT	7	14	nQ2
nc	8	13	Vcc
nc 🗌	9	12	_ Q3
Vcc□	10	11	🗆 nQ3
			•

ICS8533I-31 20-Lead TSSOP 6.5mm x 4.4mm x 0.925mm package body G Package Top View

The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification. Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.

Table	1.	Pin	Descriptions
-------	----	-----	--------------

Number	Name	Ту	ре	Description	
1	V _{EE}	Power		Negative supply pin.	
2	CLK_EN	Input	Pullup	Synchronizing clock enable. When HIGH, clock outputs follows clock input. When LOW, Q outputs are forced low, nQ outputs are forced high. LVCMOS / LVTTL interface levels.	
3	CLK_SEL	Input	Pulldown	Clock select input. When LOW, selects CLK, nCLK input. When HIGH, selects XTAL input. LVCMOS / LVTTL interface levels.	
4	CLK	Input	Pulldown	Non-inverting differential clock input.	
5	nCLK	Input	Pullup	Inverting differential clock input.	
6, 7	XTAL_IN XTAL_OUT	Input		Crystal oscillator interface XTAL_IN is the input, XTAL_OUT is the output.	
8, 9	nc	Unused		No connect.	
10, 13, 18	V _{CC}	Power		Power supply pins.	
11, 12	nQ3, Q3	Output		Differential clock output pair. LVPECL interface levels.	
14, 15	nQ2, Q2	Output		Differential clock output pair. LVPECL interface levels.	
16, 17	nQ1, Q1	Output		Differential clock output pair. LVPECL interface levels.	
19, 20	nQ0, Q0	Output		Differential clock output pair. LVPECL interface levels.	

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Function Tables

Table 3A. Control Input Function Table

	Inputs	Out	puts	
CLK_EN	CLK_SEL	Selected Source	Q0:Q3	nQ0:nQ3
0	0	CLK, nCLK	Disabled; Low	Disabled; High
0	1	XTAL_IN, XTAL_OUT	Disabled; Low	Disabled; High
1	0	CLK, nCLK	Enabled	Enabled
1	1	XTAL_IN, XTAL_OUT	Enabled	Enabled

After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock or crystal oscillator edge as shown in Figure 1. In the active mode, the state of the outputs are a function of the CLK, nCLK and XTAL inputs as described in Table 3B.

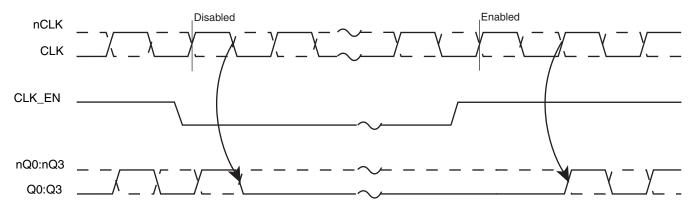


Figure 1. CLK_EN Timing Diagram

Inp	Inputs		puts		
CLK	nCLK	Q0:Q3	nQ0:nQ3	Input to Output Mode	Polarity
0	1	LOW	HIGH	Differential to Differential	Non inverting
1	0	HIGH	LOW	Differential to Differential	Non inverting
0	Biased; NOTE 1	LOW	HIGH	Single-ended to Differential	Non inverting
1	Biased; NOTE 1	HIGH	LOW	Single-ended to Differential	Non inverting
Biased; NOTE 1	0	HIGH	LOW	Single-ended to Differential	Inverting
Biased; NOTE 1	1	LOW	HIGH	Single-ended to Differential	Inverting

Table 3B. Clock Input Function Table

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	4.6V
Inputs, V _I	-0.5V to V _{CC} + 0.5V
Outputs, I _O	
Continuos Current	50mA
Surge Current	100mA
Package Thermal Impedance, θ_{JA}	91.12°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, V_{EE} = 3.3V ± 5%, V_{CC} = 0V, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Power Supply Voltage		3.135	3.3	3.465	V
I _{EE}	Power Supply Current			40		mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{EE} = 3.3V \pm 5\%$, $V_{CC} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{CC} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
	Input Ligh Current	CLK_EN	$V_{CC} = V_{IN} = 3.465V$			5	μA
I _{IH} Input High Current	CLK_SEL	$V_{CC} = V_{IN} = 3.465V$			150	μA	
	Input Low Current	CLK_EN	V _{CC} = 3.465V, V _{IN} = 0V	-150			μA
I _{IL} Input Low Current	CLK_SEL	V _{CC} = 3.465V, V _{IN} = 0V	-5			μA	

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	nCLK	$V_{CC} = V_{IN} = 3.465V$			5	μA
I _{IH} Input High Current	CLK	$V_{CC} = V_{IN} = 3.465V$			150	μA	
1	Input Low Current	nCLK	$V_{CC} = 3.465V,$ $V_{IN} = 0V$	-150			μA
ι _L	Input Low Current	CLK	$V_{CC} = 3.465$ V, $V_{IN} = 0$ V	-5			μA
V _{PP}	Peak-to-Peak Voltage; NOTE 1			0.15		1.3	V
V _{CMR}	Common Mode Input	Voltage; NOTE 1, 2		V _{EE} + 0.5		V _{CC} – 0.85	V

Table 4C. Differential DC Characteristics, V_{CC} = 3.3V \pm 5%, V_{EE} = 0V, T_A = -40^{\circ}C to 85°C

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode input voltage is defined as V_{IH} .

Table 4D. LVPECL DC Characteristics, V_{CC} = 3.3V \pm 5%, V_{EE} = 0V, T_{A} = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{CC} – 1.4		V _{CC} – 0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{CC} – 2.0		V _{CC} – 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Output termination with 50 Ω to V_{CC} – 2V.

Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		14		25	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

AC Electrical Characteristics

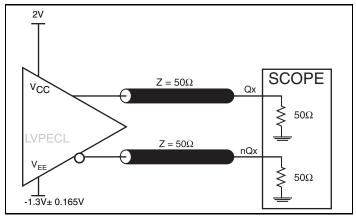
Table 6. AC Characteristics, V_{CC} = 3.3V \pm 5%, V_{EE} = 0V, T_{A} = -40°C to 85°C

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				650	MHz
t _{PD}	Propagation Delay; NOTE 1	$f \le 650 \text{MHz}$		1.5		ns
<i>t</i> jit	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	650MHz, (Integration Range: 1.875MHz – 20MHz)		TBD		ps
<i>t</i> sk(o)	Output Skew; NOTE 2, 5			25		ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 5			150		ps
t _R / t _F	Output Rise/Fall Time	20% to 80% @ 50MHz	300		700	ps
odc	Output Duty Cycle			50		%

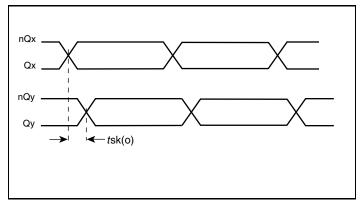
All parameters measured at 500MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

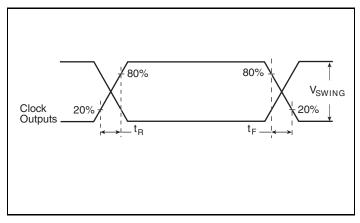
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

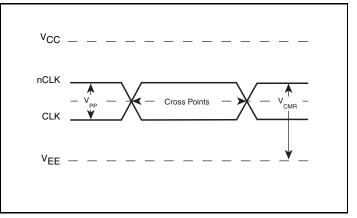

Measured at the output differential cross points.

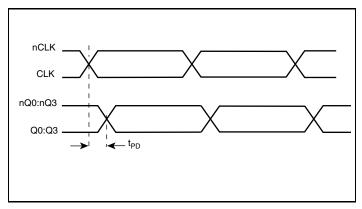
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

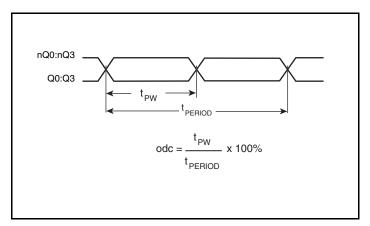

NOTE 4: Measured using CLK. For XTAL input, refer to Application Note.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.


Parameter Measurement Information


3.3V LVPECL Output Load AC Test Circuit


Output Skew


Output Rise/Fall Time

Differential Input Level

Propagation Delay

Output Duty Cycle/Pulse Width/Period

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground.

Wiring the Differential Input to Accept Single-Ended Levels

Figure 2 shows how the differential input can be wired to accept single-ended levels. The reference voltage V_REF = $V_{CC}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{CC} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

Outputs:

LVPECL OUTPUTS

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

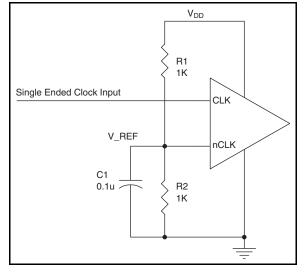


Figure 2. Single-Ended Signal Driving Differential Input

PRELIMINARY

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3F* show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver

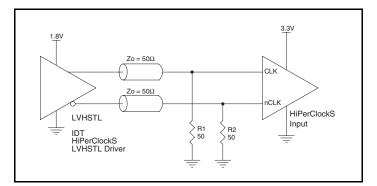


Figure 3A. HiPerClockS CLK/nCLK Input Driven by an IDT Open Emitter HiPerClockS LVHSTL Driver

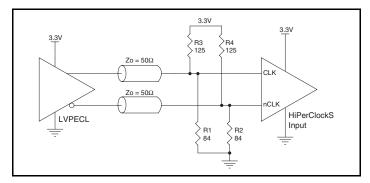


Figure 3C. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

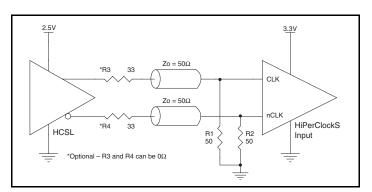


Figure 3E. HiPerClockS CLK/nCLK Input Driven by a 3.3V HCSL Driver

component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

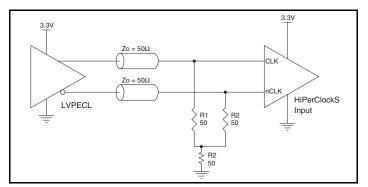


Figure 3B. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

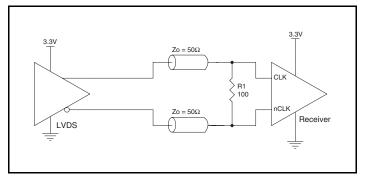


Figure 3D. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVDS Driver

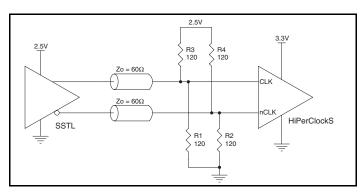
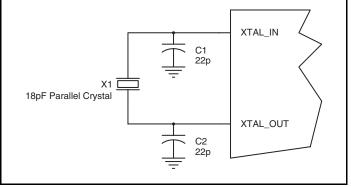
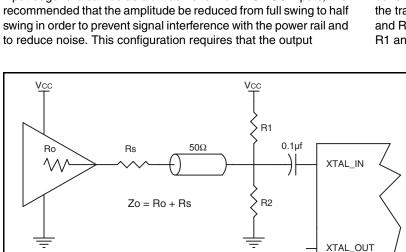
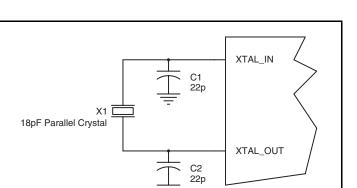


Figure 3F. HiPerClockS CLK/nCLK Input Driven by a 2.5V SSTL Driver

Crystal Input Interface


A crystal can be characterized for either series or parallel mode operation. The ICS8533I-31 fanout buffer has a built-in crystal oscillator circuit. This interface can accept either a series or parallel crystal without additional components as shown in Figure 4. The




LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in Figure 5. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω .

physical location of the crystal should be located as close as possible to the XTAL_IN and XTAL_OUT pins. The experiments show that using a 19.44MHz crystal results in an output frequency of 19.4404746MHz and approximately 44% of duty cycle.

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

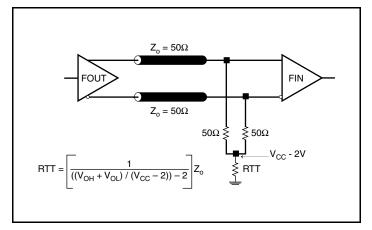


Figure 6A. 3.3V LVPECL Output Termination

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 6A and 6B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

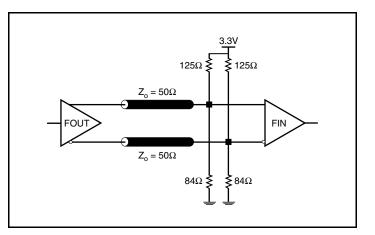


Figure 6B. 3.3V LVPECL Output Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS8533I-31. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8533I-31 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 40mA = 138.6mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair
 If all outputs are loaded, the total power is 4 * 30mW = 120mW

Total Power_{-MAX} (3.3V, with all outputs switching) = 138.6mW + 60mW = **258.6mW**</sub>

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 91.1°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.259W * 91.1^{\circ}C/W = 108.6^{\circ}C$. This is well below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 7. Thermal Resistance θ_{JA} for 16 Lead TSSOP, Forced Convection

θ _{JA} vs. Air Flow				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	91.1°C/W	86.7°C/W	84.6°C/W	

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in *Figure 7*.

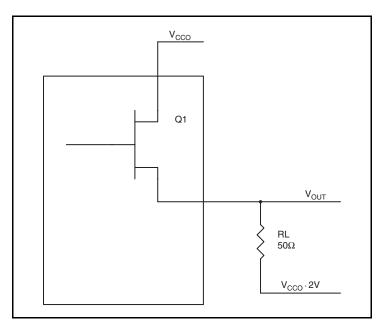


Figure 7. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50 Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.9V$ ($V_{CC_MAX} - V_{OH_MAX}$) = **0.9V**
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.7V$ ($V_{CC_MAX} - V_{OL_MAX}$) = **1.7V**

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

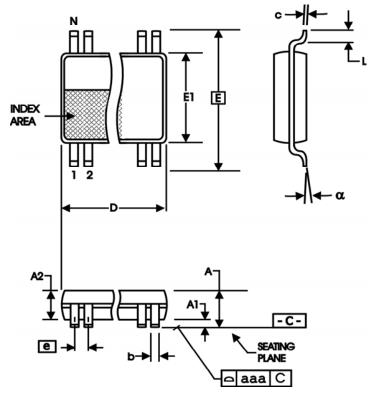
 $\mathsf{Pd}_{\mathsf{H}} = [(\mathsf{V}_{\mathsf{OH}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) = [(2\mathsf{V} - 0.9\mathsf{V})/50\Omega] * 0.9\mathsf{V} = \mathbf{19.8}\mathsf{mW}$

 $\mathsf{Pd}_{L} = [(\mathsf{V}_{\mathsf{OL}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CCO}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{L}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}))/\mathsf{R}_{L}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - 1.7\mathsf{V})/50\Omega] * 1.7\mathsf{V} = \mathbf{10.2mW}$

Total Power Dissipation per output pair = $Pd_H + Pd_L = 30mW$

Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 20 Lead TSSOP


θ _{JA} vs. Air Flow				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	91.1°C/W	86.7°C/W	84.6°C/W	

Transistor Count

The transistor count for ICS8533I-31 is: TBD

Package Outline and Package Dimensions

Package Outline - G Suffix for 20-Lead TSSOP

Table 9. Package Dimensions for 20 Lead TSSOP

All Dimensions in Millimeters				
Symbol	Minimum	Maximum		
N	20			
Α		1.20		
A1	0.05	0.15		
A2	0.80	1.05		
b	0.19	0.30		
С	0.09	0.20		
D	6.40	6.60		
E	6.40 Basic			
E1	4.30	4.50		
е	0.65 Basic			
L	0.45	0.75		
α	0°	8°		
aaa		0.10		

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8533AGI-31	ICS8533AGI31	20 Lead TSSOP	Tube	-40°C to 85°C
8533AGI-31T	ICS8533AGI31	20 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C
8533AGI-31LF	TBD	"Lead-Free" 20 Lead TSSOP	Tube	-40°C to 85°C
8533AGI-31LFT	TBD	"Lead-Free" 20 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851

© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA