阅读申明

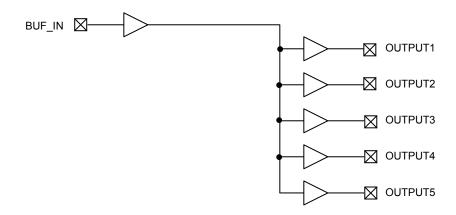
- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

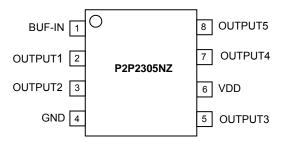
- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

3.3V 1:5 Clock Buffer

Features


- One-Input to Five-Output Buffer/Driver
- Buffers all frequencies from DC to 133.33MHz
- Low power consumption for mobile applications
 Less than 32mA at 66.6MHz with unloaded outputs
- Input-Output delay: 6nS(max)
- Output-output skew less than 250pS
- 8-pin SOIC Package
- Supply Voltage: 3.3V ± 0.3V

Functional Description


P2P2305NZ is a low-cost high-speed buffer designed to accept one clock input and distribute up to five clocks in mobile PC systems and desktop PC systems. The device operates at 3.3V and outputs can run up to 133.33MHz.

P2P2305NZ is designed for low EMI and power optimization and consumes less than 32mA at 66.6MHz, making it ideal for the low-power requirements of mobile systems. It is available in an 8-pin SOIC Package.

Block Diagram

Pin Configuration

Pin Description

	m Decempation				
Pin#	Pin Name	Description			
6	V_{DD}	3.3V Digital Voltage Supply			
4	GND	Ground			
1	BUF_IN	Input Clock			
2, 3, 5, 7, 8	OUTPUT [1:5]	Outputs			

Absolute Maximum Ratings

Parameter	Min	Max	Unit		
Supply Voltage to Ground Potential	-0.5	+4.6	V		
DC Input Voltage (Except REF)	-0.5	V _{DD} + 0.5	V		
DC Input Voltage (REF)	-0.5	7	V		
Storage Temperature	-65	+150	C		
Max. Soldering Temperature (10 sec)		260	C		
Junction Temperature		150	C		
Static Discharge Voltage (As per JEDEC STD22- A114-B)					
Note: These are stress ratings only and functional usage is not implied. Exposure to absolute maximum ratings for prolonged periods can affect device reliability.					

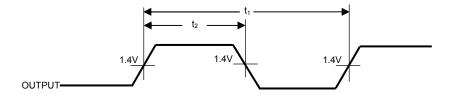
Operating Conditions

Parameter	Description	Min	Max	Unit
V_{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating temperature	-40	85	C
C_L	Load Capacitance, Fout < 100MHz		30	pF
OL.	Load Capacitance,100MHz < Fout < 133.33MHz		15	pF
C _{IN}	Input Capacitance		7	pF
BUF_IN, OUTPUT [1:5]	Operating Frequency	DC	133.33	MHz
t _{PU}	Power-up time for all V_{DD} 's to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	mS

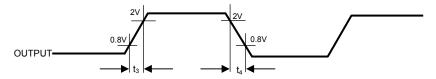
Electrical Characteristics

Symbol	Parameter		Test Conditions	Min	Max	Unit
V _{IL}	Input LOW	Voltage ¹			0.8	V
V _{IH}	Input HIGH	Voltage ¹		2.2		V
I _{IL}	Input LOW Current		V _{IN} = 0V		50.0	μΑ
I _{IH}	Input HIGH Current		$V_{IN} = V_{DD}$		100.0	μΑ
V _{OL}	Output LOW Voltage ²		I _{OL} = 12mA		0.4	٧
V _{OH}	Output HIGH Voltage ²		I _{OH} = -12mA	2.4		V
I _{DD}	Supply Current	0℃ to +70℃	Unloaded outputs at 66.66MHz		30	mΛ
		-40℃ to +85℃			32	mA

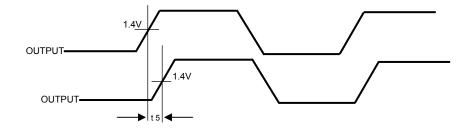
Switching Characteristics ¹

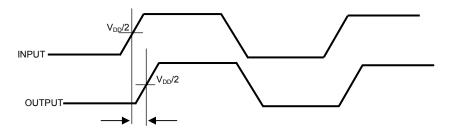

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t ₃	Rise Time ²	Measured between 0.8V and 2.0V		1.5	2	nS
t ₄	Fall Time ²	Measured between 2.0V and 0.8V		1.5	2	nS
t _D	Duty Cycle ² = $t_2 \div t_1$	Measured at 1.4V (For an Input Clock Duty Cycle 50%)	45	50	55	%
t ₅	Output to Output Skew ²	All outputs equally loaded			±250	pS
t ₆	Propagation Delay, BUF_IN Rising Edge to OUTPUT Rising Edge ²	Measured at V _{DD} /2		4	6	nS

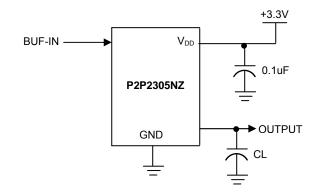
Notes: 1. BUF_IN input has a threshold voltage of V_{DD}/2.
2. Parameter is guaranteed by design and characterization. It is not 100% tested in production.


Notes: 1. All parameters specified with loaded outputs.
2. Parameter is guaranteed by design and characterization. It is not 100% tested in production.

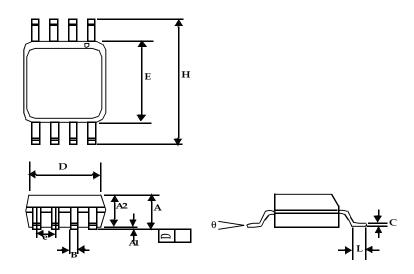
Switching Waveforms


Duty Cycle Timing


All Outputs Rise/Fall Time


Output-Output Skew

Input-Output Propagation Delay



Test Circuit

Package Information

8-lead (150-mil) SOIC Package

	Dimensions				
Symbol	Inches		Millimeters		
	Min	Max	Min	Max	
A1	0.004	0.010	0.10	0.25	
Α	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
С	0.007	0.010	0.18	0.25	
D	0.193	BSC	4.90 BSC		
Е	0.154	54 BSC 3.91 BSC		BSC	
е	0.050 BSC		1.27	1.27 BSC	
Н	0.236 BSC		6.00 BSC		
L	0.016	0.050	0.41	1.27	
θ	0°	8°	0°	8°	

Ordering Code

Part Number Marking		Package Type	Temperature	
P2P2305NZG-08SR	ADA	08-pin 150-mil SOIC, Tape and Reel, Pb Free	0℃ to +70℃	
P2I2305NZG-08ST	ADB	08-pin 150-mil SOIC, Tube, Pb Free	-40℃ to +85℃	
P2I2305NZG-08SR	ADB	08-pin 150-mil SOIC, Tape and Reel, Pb Free	-40℃ to +85℃	

A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-free.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PulseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free

USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free

USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your

local Sales Representative