阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

AS1539/AS1541

8/4-Channel, 10-Bit I^{2} C Analog-to-Digital Converter

1 General Description

The AS1539/AS1541 are single-supply, low-power, 10 -bit data acquisition devices featuring a serial $\mathrm{I}^{2} \mathrm{C}$ interface and an 8-channel (AS1539) or 4-channel (AS1541) multiplexer.
The analog-to-digital (A/D) converters features a sam-ple-and-hold amplifier an internal asynchronous clock and an internal reference.

The combination of an $I^{2} C$ serial, 2-wire interface and micropower consumption makes the AS1539 and AS1541 ideal for applications requiring the A/D converter to be close to the input source in remote locations and for applications requiring isolation.
The device is available in a TSSOP-16 or TQFN 4×4 16pin package.

2 Key Features

- Single Supply: 2.7 to 5.25 V
- 8-Channel Multiplexer (AS1539)
- 4-Channel Multiplexer (AS1541)
- Sampling Rate: 50kSPS
- No Missing Codes
- Internal Reference: 2.5 V
- High Speed $\mathrm{I}^{2} \mathrm{C}$ Interface at 3.4 MHz
- $<1.5 \mu \mathrm{~A}$ Full Shutdown Current
- TSSOP-16 or TQFN 4×4 16-pin Package

3 Applications

The device is ideal for voltage-supply monitoring, isolated data acquisition, transducer interfaces, batteryoperated systems, remote data acquisition or any other analog-to-digital conversion application.

Figure 1. Block Diagram

4 Pinout

Pin Assignments

Figure 2. Pin Assignments (Top View)

Pin Descriptions

Table 1. Pin Descriptions

AS1539	AS1541	Pin Name	Description
-	$1: 3,16$	$\mathrm{CHO}: \mathrm{CH} 3$	Analog Input Channels 0 to 3
$1: 8$	-	$\mathrm{CHO}: \mathrm{CH} 7$	Analog Input Channels 0 to 7
9	6	GND	Analog Ground
10	7	REFIN/OUT	Internal Reference/External Reference Input
11	8	COM	Analog Input Channel Common
12	10	A0	Slave Address Bit 0
13	11	A1	Slave Address Bit 1
14	12	SCL	Serial Clock
15	13	SDA	Serial Data
16	15	+VDD	Power Supply Input. 2.7 to 5.25V.
-	$4,5,9,14$	NC	Not Connected

5 Absolute Maximum Ratings

Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 4 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2. Absolute Maximum Ratings

Parameter	Min	Max	Units	Comments
+VDD to GND	-0.3	+6	V	
Digital Input Voltage to GND	-0.3	$\begin{array}{\|c\|} \hline+\mathrm{VDD}+ \\ 0.3 \end{array}$	V	
Thermal Resistance $\theta^{\text {JA }}$		100	${ }^{\circ} \mathrm{C} / \mathrm{W}$	on PCB
Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$	
Junction Temperature (TJMAX)		150	${ }^{\circ} \mathrm{C}$	
ESD	1.5		kV	HBM MIL-Std. 883E 3015.7 methods
Package Body Temperature		+260	${ }^{\circ} \mathrm{C}$	The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/JEDEC J-STD-020C "Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices". The lead finish for Pb -free leaded packages is matte tin $(100 \% \mathrm{Sn})$.

6 Electrical Characteristics

Electrical Characteristics

$+V D D=+2.7$ to $+5.25 V$, VREF $=+2.5 \mathrm{~V}$ external, $S C L=3.4 \mathrm{MHz}, T_{A M B}=-40$ to $+85^{\circ} \mathrm{C}$ (unless otherwise specified).
Table 3. Electrical Characteristics

Symbol	Parameter	Condition	Min	Typ	Max	Unit
Analog Input						
	Fullscale Input Span	Positive input, negative input	0		VReF	V
	Absolute Input Range	Positive input	-0.3		$\begin{aligned} & + \text { VDD } \\ & +0.3 \end{aligned}$	V
		Negative Input	-0.3		$\begin{aligned} & + \text { VDD } \\ & +0.3 \end{aligned}$	V
	Capacitance	Track Mode		15		pF
		Hold Mode		8		
ILEAK	Leakage Current			± 0.1	± 1	$\mu \mathrm{A}$
Static Performance						
	No Missing Codes		10			Bits
	Integral Linearity Error	VREF $=2.5 \mathrm{~V}, 1 \mathrm{LSB}=610 \mu \mathrm{~V}$		± 0.2	± 0.375	LSB
	Differential Linearity Error			± 0.125	± 0.25	LSB
	Offset Error			± 0.125	± 1.5	LSB
	Offset Error Match ${ }^{1}$			± 0.025	$\pm .5$	LSB
	Gain Error			± 0.25	± 1.5	LSB
	Gain Error Match ${ }^{1}$			± 0.025	± 0.5	LSB
	Power Supply Rejection			1		mV
Dynamic Performance						
	Throughput Frequency				50	kHz
	Conversion Time				6.67	$\mu \mathrm{s}$
AC Accuracy						
THD	Total Harmonic Distortion ${ }^{2}$	VIN = 2.5VP-P @ 10kHz		-70		dB
	Signal-to-Noise Ratio	VIN = 2.5VP-P @ 10kHz		61.5		dB
	Signal-to-Noise (+ Distortion) Ratio	VIN $=2.5 \mathrm{VP}-\mathrm{P}$ @ 10kHz		61.5		dB
	Spurious-Free Dynamic Range	VIN = 2.5VP-P @ 10kHz		70		dB
Voltage Reference Output						
	Range		2.475	2.5	2.525	V
	Internal Reference Drift			30		ppm $/{ }^{\circ} \mathrm{C}$
	Output Impedance			30		Ω
	Quiescent Current			440		$\mu \mathrm{A}$
Voltage Reference Input						
	Range		1		VDD	V
	Input Resistance			1		G Ω
	Reference Input Current	PD = 01 Internal Ref. OFF, ADC ON @ 50kSPS		4		$\mu \mathrm{A}$

Table 3. Electrical Characteristics

Symbol	Parameter	Condition	Min	Typ	Max	Unit
CMOS Digital I/O						
VIH	Input High Logic Level		$\begin{aligned} & +\mathrm{VDD} \\ & \times 0.7 \end{aligned}$		$\begin{aligned} & +\mathrm{VDD} \\ & +0.5 \end{aligned}$	V
VIL	Input Low Logic Level		-0.3		$\begin{aligned} & \hline+\mathrm{VDD} \\ & \times 0.3 \end{aligned}$	V
Vol	Output Low Logic Level	3mA sink current			0.4	V
IIH	Input High Leakage Current	VIH $=+\mathrm{VDD}$			1	$\mu \mathrm{A}$
IIL	Input Low Leakage Current	VIL = GND	-1			$\mu \mathrm{A}$
	Data Format	Straight binary				
Power Supply Requirements						
+VDD	Power Supply Voltage	Specified performance	2.7		5.25	V
IQstat	Analog Current in Static Mode,$3.6 \mathrm{~V}$	PD = 00 Full Power-Down		0.04	1.2	$\mu \mathrm{A}$
		PD = 01 Internal Ref. OFF, ADC ON		400	500	
		PD = 10 Internal Ref. ON, ADC OFF		500	600	
		PD = 11 Internal Ref. ON, ADC ON		800	900	
	Analog Current in Static Mode,5.25 V	PD = 00 Full Power-Down		0.04	1.5	$\mu \mathrm{A}$
		PD $=01$ Internal Ref. OFF, ADC ON		450	550	
		PD = 10 Internal Ref. ON, ADC OFF		550	650	
		PD = 11 Internal Ref. ON, ADC ON		850	950	
lQ	Quiescent Current at Full Speed, 3.6V	PD = 01 Internal Ref. OFF, ADC ON		500	600	$\mu \mathrm{A}$
		PD = 11 Internal Ref. ON, ADC ON		850	950	
	Quiescent Current at Full Speed, 5.25V	PD = 01 Internal Ref. OFF, ADC ON		650	800	$\mu \mathrm{A}$
		PD = 11 Internal Ref. ON, ADC ON		915	1150	

1. Guaranteed by design and characterized on sample base.
2. THD measure out to 5th harmonic.

Timing Characteristics

$+V D D=+2.7$ to $5.25 V$, TAMB $=-40$ to $+85^{\circ} \mathrm{C}$ (unless otherwise specified). All values referenced to Vihmin and Vilmax levels.
Table 4. Timing Characteristics

Symbol	Parameter	Condition	Min	Typ	Max	Unit
fSCL	SCL Frequency		0.1		3.4	MHz
tBUF	Bus Free Time Between STOP and START Conditions		1.3			$\mu \mathrm{s}$
Tholdstart	Hold Time for Repeated START Condition		160			ns
tLow	SCL Low Period		50		75	ns
tHIGH	SCL High Period		50		75	ns
TSETUPSTART	Setup Time for Repeated START Condition		100			ns
TsETUPDATA	Data Setup Time		10			ns
Tholddata	Data Hold Time				70	ns
TRISESCLK ${ }^{1}$	SCL Rise Time		10		40	ns
TRISESCLK1 ${ }^{1}$	SCL Rise Time after Repeated START Condition and After an ACK Bit		10		80	ns

Table 4. Timing Characteristics

Symbol	Parameter	Condition	Min	Typ	Max	Unit
Tfallsclk 1	SCL Fall Time		10		40	ns
Trisesda 1	SDA Fall Time		20		80	ns
Tfallsda 1	SDA Fall Time		20		80	ns
Tsetupstop 1	STOP Condition Setup Time		160			ns

1. Guaranteed by design and characterized on sample base.

Figure 3. Timing Diagram

7 Typical Operating Characteristics

VDD $=3.6 \mathrm{~V} ;$ VREF $=2.5 \mathrm{~V}$ (internal), $f S C L=3.4 \mathrm{MHz}$, CREF $=4.7 \mu \mathrm{~F}, \mathrm{TAMB}=+25^{\circ} \mathrm{C}$ (unless otherwise specified).

Figure 4. DNL vs. Digital Output Code, Int. Reference

Figure 6. DNL vs. Digital Output Code, Ext. Reference

Figure 8. Offset Error vs. Temperature

Figure 5. INL vs. Digital Output Code, Int. Reference

Figure 7. INL vs. Digital Output Code, Ext. Reference

Figure 9. Offset Matching vs. Temperature

Figure 11. Offset Matching vs. Supply Voltage

Figure 13. Gain Matching vs. Temperature

Figure 15. Gain Matching vs. Supply Voltage

Figure 17. Supply Current vs. Supply Voltage, $P D=01$

Figure 19. Supply Current vs. Sampling Rate, $P D=11$

Figure 21. FFT, Ext. Reference

8 Detailed Description

The AS1539/AS1541 successive approximation register (SAR) A/D converter architecture is based on capacitive redistribution which inherently includes a sample-and- hold function.
The AS1539/AS1541 core is controlled by an internally generated free-running clock. When the device is not performing conversions or being addressed, the A/D converter-core and internal clock are powered off.

Figure 22. Simplified I/O Diagram

Analog Input

When the converter enters the hold mode, the voltage on the selected $\mathrm{CH} x$ pin is captured on the internal capacitor array. The input current on the analog inputs depends on the conversion rate of the device. During the sample period, the source must charge the internal sampling capacitor (typically 15 pF). After the capacitor has been fully charged, there is no further input current. The amount of charge transfer from the analog source to the converter is a function of conversion rate.

Figure 23. Reference circuit

Reference Voltage

The AS1539/AS1541 can operate with an internal 2.5 V reference or an external reference. If a +5 V supply is used, an external +5 V reference is required in order to provide full dynamic range for a 0 V to +VDD analog input. The external reference can be as low as 1 V . When using a +2.7 V supply, the internal +2.5 V reference will provide full dynamic range for a 0 V to +2.5 V analog input.
As the reference voltage is reduced, the analog voltage weight of each digital output code is reduced. This is often referred to as the LSB (least significant bit) size and is equal to the reference voltage divided by 1024. This means that any offset or gain error inherent in the A/D converter will appear to increase, in terms of LSB size, as the reference voltage is reduced.

Digital Interface

The AS1539/AS1541 supports the $I^{2} \mathrm{C}$ serial bus and data transmission protocol in high-speed mode at 3.4 MHz . The AS1539/AS1541 operates as a slave on the $I^{2} \mathrm{C}$ bus. The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions. Connections to the bus are made via the open-drain I/O pins SCL and SDA.

Figure 24. Bus Protocol

The bus protocol (as shown in Figure 24) is defined as:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

The bus conditions are defined as:

- Bus Not Busy. Data and clock lines remain HIGH.
- Start Data Transfer. A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines a START condition.
- Stop Data Transfer. A change in the state of the data line, from LOW to HIGH, while the clock line is HIGH, defines the STOP condition.
- Data Valid. The state of the data line represents valid data, when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions is not limited and is determined by the master device. The information is transferred byte-wise and each receiver acknowledges with a ninth-bit. Within the $\mathrm{I}^{2} \mathrm{C}$ bus specifications a high-speed mode (3.4 MHz clock rate) is defined.
- Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse that is associated with this acknowledge
bit. A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition.
Figure 24 on page 11 details how data transfer is accomplished on the $I^{2} \mathrm{C}$ bus. Depending upon the state of the $\mathrm{R} / \overline{\mathrm{W}}$ bit, two types of data transfer are possible:
- Master Transmitter to Slave Receiver. The first byte transmitted by the master is the slave address, followed by a number of data bytes. The slave returns an acknowledge bit after the slave address and each received byte
- Slave Transmitter to Master Receiver. The first byte, the slave address, is transmitted by the master. The slave then returns an acknowledge bit. Next, a number of data bytes are transmitted by the slave to the master. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a not-acknowledge is returned. The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or a repeated START condition. Since a repeated START condition is also the beginning of the next serial transfer, the bus will not be released.

The AS1539 can operate in the following slave modes:

- Slave Receiver Mode. Serial data and clock are received through SDA and SCL. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit.
- Slave Transmitter Mode. The first byte (the slave address) is received and handled as in the slave receiver mode. However, in this mode the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted on SDA by the AS1539 while the serial clock is input on SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer.

Address Byte

The address byte (see Figure 25) is the first byte received following the START condition from the master device.
Figure 25. Address Byte

| MSB | 6 | 5 | 4 | 3 | 2 | 1 | LSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 0 | A1 | A0 | R / \bar{W} |

- The first five bits (MSBs) of the slave address are factory-set to 10010
- The next two bits of the address byte are the device select bits, A1 and A0, which are set by the state of pins A1 and A0 at startup. A maximum of four devices with the same pre-set code can therefore be connected on the same bus at one time. Pins A1/A0 can be connected to +VDD or digital ground
- The last bit of the address byte (R / \bar{W}) define the operation to be performed. When set to a 1 a read operation is selected; when set to a 0 a write operation is selected.
Following the START condition, the AS1539 monitors the SDA bus, checking the device type identifier being transmitted. Upon receiving the 10010 code, the appropriate device select bits, and the $\mathrm{R} / \overline{\mathrm{W}}$ bit, the slave device outputs an acknowledge signal on the SDA line.

Command Byte

The AS1539/AS1541 operation, including powerdown (see Table 5) and channel selection (see Table 6) is determined by a command byte (see Figure 26).

Figure 26. Command Byte

Where:

SD: Single-Ended/Differential Inputs
0 : Differential Inputs
1: Single-Ended Inputs
C2, C1, C0: Channel Selections
PD1, PD0: Power-Down Selection
X: Unused

Powerdown Selection

Powerdown modes for the AS1539/AS1541 are selected by setting bits PD0 and PD1 of a command byte (see Command Byte on page 12).

Table 5. Powerdown Mode Bit Settings

PD1	PD0	Description
0	0	Powerdown between A/D converter conversions.
0	1	Internal reference off and A/D converter on.
1	0	Internal reference on and A/D converter off.
1	1	Internal reference on and A/D converter on.

Channel Selection

Channel selection for the AS1539/AS1541 is made using a command byte (see Command Byte on page 12).
Table 6. Channel Selection Bit Settings ${ }^{1}$

	SD	C2	C1	CO	CHO	CH1	CH2	CH3	CH4	CH5	CH6	CH7	COM
	0	0	0	0	+IN	-IN	-	-	-	-	-	-	-
	0	0	0	1	-	-	+IN	-IN	-	-	-	-	-
	0	0	1	0	-	-	-	-	+IN	-IN	-	-	-
	0	0	1	1	-	-	-	-	-	-	+IN	-IN	-
	0	1	0	0	-IN	+IN	-	-	-	-	-	-	-
	0	1	0	1	-	-	-IN	+IN	-	-	-	-	-
	0	1	1	0	-	-	-	-	-IN	$+\mathrm{IN}$	-	-	-
	0	1	1	1	-	-	-	-	-	-	-IN	+IN	-
	1	0	0	0	+IN	-	-	-	-	-	-	-	-IN
	1	0	0	1	-	-	+IN	-	-	-	-	-	-IN
	1	0	1	0	-	-	-	-	+IN	-	-	-	-IN
	1	0	1	1	-	-	-	-	-	-	+IN	-	-IN
	1	1	0	0	-	+IN	-	-	-	-	-	-	-IN
	1	1	0	1	-	-	-	+IN	-	-	-	-	-IN
	1	1	1	0	-	-	-	-	-	+IN	-	-	-IN
	1	1	1	1	-	-	-	-	-	-	-	+IN	-IN

1. For the 4-channel AS1541 only combinations of $\mathrm{CHO}: \mathrm{CH} 3$ applies.

9 Application Information

Initiating a Conversion

After the AS1539/AS1541 has been write-addressed by the bus master, the A/D converter circuitry is powered on, and conversions will begin when a command byte bit C0 (see Command Byte on page 12) is received. If the address byte is valid, the AS1539/AS1541 will return an ACK.

Reading Data

Data can be read from the AS1539/AS1541 by read-addressing the device (LSB of address byte set to 1 (see Command Byte on page 12)) and receiving the transmitted bytes. Converted data can only be read from the AS1539/ AS1541 once a conversion has been initiated as described in Initiating a Conversion.

Each 12-bit data word (see Figure 27) is returned in two bytes, where D9 is the MSB of the data word, and D0 is the LSB. Byte 0 is sent first, followed by Byte 1.

Figure 27. Data Word

MSB	6	5	4	3	2	1	LSB	
Byte 0	0	0	0	0	D9	D8	D7	D6
Byte 1	D5	D4	D3	D2	D1	D0	0	0

Figure 28 illustrates the interaction between the master and the slave AS1539/AS1541.
The most efficient way to perform continuous conversions is to issue repeated STARTs to the AS1539/AS1541 (to secure the bus for subsequent ADC conversions) after reading each conversion. It is recommended that during the conversion mode no data is clocked into the ADC to prevent internal noise. Therefore, after the repeated start commend it is recommanded not to clock in or out any data from the converter for $3.7 \mu \mathrm{~s}$. The ADC powers up after the PDO bit is clocked in and it takes 1.4μ s to fully power up. At a clock frequency of 3.4 MHz this time is automatically achieved and no extra delay should be included.

Figure 28. Read Sequence

Where:
A: Acknowledge (SDA Low)
N: Not Acknowledge (SDA High)
S: START Condition
P: STOP Condition
Sr: Repeated START Condition
$\overline{\mathrm{W}}: 0$ (Write)
R: 1 (Read)

Reading with Internal Reference On/Off

The internal reference defaults to off when the AS1539/AS1541 power is on. If the reference (internal or external) is continuously turned on and off, a proper amount of settling time must be added before a normal conversion cycle can be started. The exact amount of settling time needed varies depending on the reference capacitor. For example for a reference capacitor of $4.7 \mu \mathrm{~F}$ and considering the output impedance of the internal reference of 30Ω and the amount of time to fully charge the capacitor will be 1.4 ms . If the reference capacitor is not fully discharged this time can be reduced greatly.

Figure 29 shows the correct internal reference enable sequence before issuing the typical read sequences required for the mode when an internal reference is used.

Note: Typical read sequences can be re-used once the internal reference has settled.
Figure 29. Internal Reference Enable Sequence and Typical Read Sequence

Where:

A: Acknowledge (SDA Low)
N: Not Acknowledge (SDA High)
S: START Condition
P: STOP Condition
Sr: Repeated START Condition
$\overline{\mathrm{W}}$: 0 (Write)
R: 1 (Read)
X: Dont Care

When using the internal reference:

1. Bit PD1 off the command byte must always be set to logic 1 for each sample conversion that is issued by the sequence, as shown in Figure 28 on page 14.
2. In order to achieve 10-bit accuracy conversion when using the internal reference, the internal reference settling time must be considered.
If bit PD1 has been set to logic 0 while using the AS1539/AS1541, then the settling time must be reconsidered after PD1 is set to logic 1 (i.e., whenever the internal reference is turned on after it has been turned off, the settling time must be long enough to get 10-bit accuracy conversion).
3. When the internal reference is off, it is not turned on until both the first command byte with PD1 = 1 is sent and then a STOP condition or repeated START condition is issued. (The actual turn-on time occurs once the STOP or repeated START condition is issued.) Any command byte with PD1 = 1 issued after the internal reference is turned on serves only to keep the internal reference on. Otherwise, the internal reference would be turned off by any command byte with PD1 $=0$.
The example in Figure 29 can be generalized for a conversion cycle by simply swapping the timing of the conversion cycle.

Note: If an external reference is used, PD1 must be set to 0 , and the external reference must be settled. The typical sequence in Figure 28 on page 14 or Figure 29 on page 15 can then be used.

Layout

For optimum performance, care should be taken with the physical layout of the AS1539/AS1541 circuitry. The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground connections, and digital inputs that occur just prior to latching the output of the analog comparator. Therefore, during any single conversion for an n-bit SAR converter, there are n windows in which large external transient voltages can easily affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic, and high-power devices.

- Power to the AS1539/AS1541 should be clean and well-bypassed. A $0.1 \mu \mathrm{~F}$ ceramic bypass capacitor should be placed as close to the device as possible. A 1 to $10 \mu \mathrm{~F}$ capacitor may also be needed if the impedance of the connection between +VDD and the power supply is high.
- The AS1539/AS1541 architecture offers no inherent rejection of noise or voltage variation in regards to using an external reference input. This is of particular concern when the reference input is tied to the power supply. Any noise and ripple from the supply will appear directly in the digital results.
- While high-frequency noise can be filtered out, voltage variation due to line frequency (50 or 60 Hz) can be difficult to remove.
- The GND pin should be connected to a clean ground point. In many cases, this will be the analog ground. Avoid connections that are too near the grounding point of a microcontroller or digital signal processor.
- The ideal layout will include an analog ground plane dedicated to the converter and associated analog circuitry.

Note: For additional information download the evaluation board application note on our website.

10 Package Drawings and Markings

Figure 30. TSSOP-16 Package

SECTION AA

Notes:

1. All dimensions are in millimeters; angles in degrees.
2. Dimensioning and tolerancing per ASME Y14.5M - 1994.
3. Dimension D does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, and gate burrs shall not exceed 0.15 mm per side.
4. Dimension E1 does not include interlead flash or protrusion. Interlead flash or protrusions shall not exceed 0.25 mm per side.
5. Dimension b does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot.
6. Terminal numbers are for reference only.
7. Datums A and B to be determined at datum plane H.
8. Dimensions D and E1 are to be determined at datum plane H .
9. This dimension applies only to variations with an even number of leads per side.
10. Cross section $A-A$ to be determined at 0.10 to 0.25 mm from the leadtip.

Symbol	Min	Typ	Max	Notes
A	-	-	1.10	1,2
A1	0.05	-	0.15	1,2
A2	0.85	0.90	0.95	1,2
L	0.50	0.60	0.75	1,2
R	0.09	-	-	1,2
R1	0.09	-	-	1,2
b	0.19	-	0.30	1,2,5
b1	0.19	0.22	0.25	1,2
c	0.09	-	0.20	1,2
c1	0.09	-	0.16	1,2
$\theta 1$	0°	-	8°	1,2
L1		1.0REF		1,2
aaa		0.10		1,2
bbb		0.10		1,2
ccc		0.05		1,2
ddd		0.20		1,2
e		0.65BSC		1,2
$\theta 2$		$12^{\circ} \mathrm{REF}$		1,2
$\theta 3$		$12^{\circ} \mathrm{REF}$		1,2
Variations				
D	4.90	5.00	5.10	1,2,3,8
E1	4.30	4.40	4.50	1,2,4,8
E	6.4BSC			1,2
e	0.65BSC			1,2
N	16			1,2,6

Figure 31. TQFN 4×4 16-pin Package

Symbol	Min	Typ	Max	Notes
A	0.70	0.75	0.80	1,2
A1	0.00	0.02	0.05	1,2
L	0.45	0.55	0.65	1,2
L1	0.03		0.15	1,2
K	0.20			1,2
aaa		0.10		1,2
bbb		0.10		1,2
ccc		0.10		1,2
ddd		0.05		1,2

Symbol	Min	Typ	Max	Notes
D BSC		4.00		1,2
E BSC		4.00		1,2
D2	2.00	2.15	2.25	1,2
E2	2.00	2.15	2.25	1,2
b	0.25	0.30	0.35	$1,2,5$
e		0.65		
N		16		1,2
ND		4		$1,2,5$

Notes:

1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
2. All dimensions are in millimeters, angle is in degrees.
3. N is the total number of terminals.
4. Terminal \#1 identifier and terminal numbering convention shall conform to JESD 95-1 SPP-012. Details of terminal \#1 identifier are optional, but must be located within the area indicated. The terminal \#1 identifier may be either a mold, embedded metal or mark feature.
5. Dimension b applies to metallized terminal and is measured between 0.15 and 0.30 mm from terminal tip.
6. ND refers to the maximum number of terminals on D side.
7. Unilateral coplanarity zone applies to the exposed heat sink slug as well as the terminals.

11 Ordering Information

The device is available as the standard products shown in Table 7.
Table 7. Ordering Information

Model	Marking	Description	Delivery Form	Package
AS1539-BTST	AS1538	8-Channel, 10-Bit ${ }^{2} \mathrm{C}$ Analog-to-Digital Converter	Tape and Reel	TSSOP-16
AS1539-BTSU	AS1538	8-Channel, 10-Bit ${ }^{2} \mathrm{C}$ Analog-to-Digital Converter	Tubes	TSSOP-16
AS1541-BQFT	AS1540	4-Channel, 10-Bit $I^{2} \mathrm{C}$ Analog-to-Digital Converter	Tape and Reel	TQFN 4×4 $16-p i n$

Copyrights

Copyright © 1997-2007, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered \circledR. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or lifesustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Ə巴 austriamicrosystems

Contact Information

Headquarters

austriamicrosystems AG
A-8141 Schloss Premstaetten, Austria
Tel: +43 (0) 31365000
Fax: +43 (0) 313652501

For Sales Offices, Distributors and Representatives, please visit:
http://www.austriamicrosystems.com/contact

