阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

BA7657F,BH7659FS

- Description

The BA7657F, and BH7659FS are ICs that have been developed for use in PC monitors, HDTVs (high definition televisions), and other high-resolution display devices. In addition to their wide-range switching circuits for RGB signals, HD signals, and VD signals, the A7657F feature a separation (BUNRI) circuit for the synchronization signal that is superposed on the G signal, while the BH7659FS features an on-chip switch for $I^{2} C$ bus signals (SDA and SCL). These ICs can be used to simplify the input block configuration in advanced display devices.

-Features

1) Operates on $5 V$ single power supply.
2) Built-in wide-range RGB signal switches. (BA7657F :fc $=230 \mathrm{MHz}$)
(BH7659FS:fc $=250 \mathrm{MHz}$)
3) Built-in switching circuit for HD signal and VD signal.
4) Built-in separation (BUNRI) circuit for synchronization signal superposed on G signal. (BA7657F)
5) Built-in switch for $I^{2} C$ bus signals (SDA and SCL). (BH7659FS)
6) Built-in power saving function. (BH7659FS)

- Applications

PC monitors, Plasma displays, LCD monitors, and Other devices that use wide-range RGB signal switching.

- Line up matrix

Parameter	BA7657F	BH7659FS
Circuit current (mA)	35	25
Circuit current during low-power mode (mA)	-	14
RGB signal SW block frequency characteristics (MHz)	230	250
Synchronization signal SW block circuit configuration	2 digital switching circuits	4 CMOS analog switching circuits
Synchronization signal separation circuit	\boldsymbol{v}	-
Package	SOP24	SSOP-A32

- Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Ratings	Unit
Supply voltage		Vcc	8.0	V
Power dissipation	BA7657F	Pd	550	mW
	BH7659FS		800	
Operating temperature		Topr	-25~+75	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

※Deratings is done at $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (BA7657F), $8 \mathrm{~mW} / /^{\circ} \mathrm{C}$ (BA7659FS) above $\mathrm{Ta}=25^{\circ} \mathrm{C}$.

- Operating Range $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Ratings			Unit
		Min.	Typ.	Max.	
Supply voltage	Vcc	4.5	5.0	5.5	V

※This product is not designed for protection against radioactive rays.

－Electrical characteristics

OBA7657F（Unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ ）

Parameter	Symbol	Limits			Unit	Conditions
		Min．	Typ．	Max．		
Circuit current	ICC	20	35	50	mA	－
〈Analog SW block〉						
Maximum output level	Vom	2.8	－	－	VP－P	$\mathrm{f}=1 \mathrm{kHz}$
Voltage gain	Gv	－1．0	－0．5	0	dB	$\mathrm{f}=1 \mathrm{MHz}$ ，VIN＝1VP－P
Input pin voltage gain differential	$\Delta \mathrm{Gvi}$	－0．2	0	0.2	dB	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}$ IN $=1 \mathrm{VP}$－P
Inter block voltage gain differential	Gvi	－0．2	0	0.2	dB	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}$ IN $=1 \mathrm{VP}$－P
Input pin cross talk1	CTI1	－	－50	－40	dB	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{VIN}=1 \mathrm{VP}-\mathrm{P}$
Interblock crosstalk1	CTB1	－	－50	－40	dB	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{VIN}=1 \mathrm{VP}-\mathrm{P}$
〈Digital SW block〉						
＂H＂level input voltage	VIH	1.8	－	－	V	－
＂L＂level input voltage	VIL	－	－	1.2	V	－
＂H＂level input current	IIH	80	100	130	$\mu \mathrm{A}$	V IN $=5.0 \mathrm{~V}$
＂L＂level input current	IIL	－3	－1	－	$\mu \mathrm{A}$	$\mathrm{VIN}=0 \mathrm{~V}$
Rise time	TR	－	30	50	ns	－
Fall time	TF	－	30	50	ns	－
Rise delay time	TRD	－	50	80	ns	－
Fall delay time	Tfi	－	30	50	ns	－
＂H＂level output voltage	VOH	3.0	3.7	－	V	－
＂L＂level output voltage	Vol	－	0.2	0.4	V	－
＂H＂level output current	IOH	－400	－	－	$\mu \mathrm{A}$	－
＂L＂level output current	IOL	5	－	－	mA	－
〈Synchronization signal separation block〉						
Minimum SYNC separation level	Vsmin．	－50	－	50	mVP－P	－
＂H＂level output voltage	VOH	4.5	5.0	－	V	－
＂L＂level output voltage	Vol	－	0.2	0.5	V	－
＂L＂level output current	IOL	2	－	－	mA	－
Rise time	TR	－	80	130	ns	－
Fall time	TF	－	30	80	ns	－
Rise delay time	TRD	－	100	150	ns	－
Fall delay time	Tfd	－	100	150	ns	－
〈Control block〉						
＂H＂level input voltage	VIH	1.8	－	－	V	－
＂L＂level input voltage	VIL	－	－	1.2	V	－
＂H＂level input current	IIH	80	100	130	$\mu \mathrm{A}$	－
＂L＂level input current	IIL	－3	－1	－	$\mu \mathrm{A}$	－

OBH7659FS（Unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ ）

Parameter	Symbol	Limits			Unit	Conditions
		Min．	Typ．	Max．		
〈Entire device〉						
Circuit current	ICc	15	25	35	mA	－
Circuit current during power save	IPSV	7	14	22	mA	$\mathrm{PS}=$＂${ }^{\prime \prime}$
〈R，G，B video SW〉						
Voltage gain	Gv	－1．0	－0．5	0	dB	$\mathrm{f}=10 \mathrm{MHz}$
Interchannel relative gain	$\triangle \mathrm{Gvc}$	－0．5	0	0.5	dB	$\mathrm{f}=10 \mathrm{MHz}$
Interblock relative gain	$\triangle \mathrm{GvB}$	－0．5	0	0.5	dB	$\mathrm{f}=10 \mathrm{MHz}$
Output dynamic range	Vom	2.6	－	－	VP－P	$\mathrm{f}=1 \mathrm{kHz}$
〈C－MOS analog SW〉						
On－resistance	Ron	－	200	400	Ω	V IN $=2.5 \mathrm{~V}$
Interchannel ON resistance differential	$\triangle \mathrm{RoN}$	－	20	40	Ω	V IN $=2.5 \mathrm{~V}$
Interchannel cross talk	CT	－	－70	－55	dB	$\mathrm{f}=150 \mathrm{kHz}$
Transmission delay time	to	－	20	－	ns	RL＝ $100 \Omega, \mathrm{CL}=50 \mathrm{pF}$
〈Control block〉						
＂H＂level voltage	VH	3.5	－	－	V	－
＂L＂level voltage	VL	－	－	1.5	V	－

－Guaranteed design parameters

OBA7657F（Unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ ）

Parameter	Symbol	Limits			Unit	Conditions
		Min．	Typ．	Max．		
〈Analog SW block〉						
Input pin cross talk 2	CTI2	－	－30	－15	dB	$\mathrm{f}=230 \mathrm{kHz}$ ，VIN＝1VP－P
Interblock cross talk 2	CTB2	－	－30	－15	dB	$\mathrm{f}=230 \mathrm{MHz}$ ，VIN＝1VP－P
Frequency characteristic	Gf	－6	－3	－1	dB	$\mathrm{f}=1 \mathrm{MHz} / 230 \mathrm{MHz}, \mathrm{VIN}=1 \mathrm{VP}-\mathrm{P}$
Input pin frequency differential	$\Delta \mathrm{Gfl}$	－1	0	＋1	dB	$\mathrm{f}=1 \mathrm{MHz} / 100 \mathrm{MHz}, \mathrm{VIN}=1 \mathrm{VP}-\mathrm{P}$
Interblock frequency characteristic differential	$\triangle \mathrm{GfB}$	－1	0	＋1	dB	$\mathrm{f}=1 \mathrm{MHz} / 100 \mathrm{MHz}, \mathrm{VIN}=1 \mathrm{VP}-\mathrm{P}$
〈SYNC separation block〉						
SYNC separation frequency	fH－R	200	－	－	kHz	Input waveform ${ }^{1}$
SYNC separation pulse width 1	pwH1	3.0	－	－	$\mu \mathrm{s}$	Input waveform $*^{2} \mathrm{fH}=20 \mathrm{kHz}$
SYNC separation pulse width 2	pwH2	0.5	－	－	$\mu \mathrm{s}$	Input waveform ${ }^{2} \mathrm{fH}=100 \mathrm{kHz}$
SYNC separation pulse width 3	pwH3	0.3	－	－	$\mu \mathrm{s}$	Input waveform ${ }^{2} \mathrm{fH}=200 \mathrm{kHz}$
SYNC separation level 1	VS1	300	－	－	$\mu \mathrm{s}$	Input waveform ${ }^{3} \mathrm{fH}=20 \mathrm{kHz}$
SYNC separation level 2	VS2	100	－	－	$\mu \mathrm{s}$	Input waveform ${ }^{3} \mathrm{fH}=100 \mathrm{kHz}$
SYNC separation level 3	VS3	60	－	－	$\mu \mathrm{s}$	Input waveform ${ }^{3} \mathrm{fH}=200 \mathrm{kHz}$

〈Input waveform〉
$※ 1 \mathrm{VS}$ and pwH are variable．VS and pwH are inter－related．See the characteristics diagram．
$※ 2 \mathrm{VS}=130 \mathrm{~mW}$ and pwH are variable．
$※ 3 \mathrm{pwH}=1 \mu \mathrm{~s}$ and VS are variable．
Period of horizontal synchronization signal
DUTY 25\％

OBH7659FS（Unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ ）

Parameter	Symbol	Limits			Unit	Conditions
		Min．	Typ．	Max．		
〈R／G／B video SW〉						
Frequency characteristics 1	f1	－3．0	0	＋1．0	dB	$\mathrm{f}=50 \mathrm{MHz}$
Frequency characteristics 2	f2	－6．0	－3	－1．0	dB	$\mathrm{f}=250 \mathrm{MHz}$
Interchannel relative frequency characteristics	$\triangle \mathrm{fc}$	－0．5	0	0.5	dB	$\mathrm{f}=50 \mathrm{MHz}$
Interblock relative frequency characteristics	$\triangle \mathrm{fB}$	－0．5	0	0.5	dB	$\mathrm{f}=50 \mathrm{MHz}$
Interchannel cross talk 1	CTC1	－	－50	－35	dB	$\mathrm{f}=50 \mathrm{kHz}$
Interchannel cross talk 2	CTC2	－	－30	－15	dB	$\mathrm{f}=250 \mathrm{MHz}$
Interblock cross talk 1	CTB1	－	－50	－35	dB	$\mathrm{f}=50 \mathrm{MHz}$
Interblock cross talk 2	CTB2	－	－30	－15	dB	$\mathrm{f}=250 \mathrm{MHz}$

-Block diagram
 OBA7657F

Fig. 1

OBH7659FS

Fig. 2

- Pin descriptions (BA7657F)

OBA7657F

Pin No.	Pin name	Reference potential	Equivalent circuit	Function
$\begin{gathered} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \end{gathered}$	Red1 Input Green1 Input Blue1 Input Red2 Input Green2 Input Blue2 Input	```3.7V when selected OV when not selected```		2-channel switching of R, G , and B signals. Select between: CTL: H input1 CTL: L input2
$\begin{aligned} & 15 \\ & 19 \\ & 21 \end{aligned}$	Blue output Green output Red output	2.0 V		Output pins for RGB signals. Insert resistance from 100 to 300Ω near the pins to suppress f peaks at high frequencies.
16	Control	$\begin{aligned} & \mathrm{H} \geqq 1.8 \mathrm{~V} \\ & \mathrm{~L} \leqq 1.2 \mathrm{~V} \end{aligned}$		CTL pins Select between: CTL: H input1 CTL: L input2
$\begin{aligned} & 12 \\ & 13 \\ & 23 \\ & 24 \end{aligned}$	VD1 input VD2 input HD2 input HD1 input	$\begin{aligned} & \mathrm{H} \leqq 1.8 \mathrm{~V} \\ & \mathrm{~L} \leqq 1.2 \mathrm{~V} \end{aligned}$		2-channel switching of VD and HD signals. Select between: CTL: H input1 CTL: L input2
$\begin{aligned} & 14 \\ & 22 \end{aligned}$	VD output HD output	$\begin{gathered} \mathrm{VOH} \geqq 3.0 \mathrm{~V} \\ \mathrm{VOL} \leqq 10.5 \mathrm{~V} \end{gathered}$		Output pins for vertical synchronization signal (VD) And horizontal synchronization signal (HD).

OBA7657F

Pin No.	Pin name	Reference potential	Equivalent circuit	Function
18	Composite Video input	2.5 V		Input pin for composite signal (Sync on Green).
2	Hd Sync Signal detector	-		This pin is used to detect whether or not the HD signal is being input. When the Hd signal is being input, the synchronization signal separation circuit is stopped.
17	Composite sync output	-		Synchronization signal output pin Synchronization separation is performed for the input signal from pin 18 if the HD signal is not being input.
20	Vcc	5 V	-	Insert a decoupling capacitor near the pin.
$\begin{aligned} & 4 \\ & 6 \\ & 8 \end{aligned}$	GND	OV	-	Use as large a GND pattern area as possible.

- Pin descriptions (BH7659FS)

OBH7659FS

Pin NO	Pin name	Reference potential	Equivalent circuit	Function
1 3 5 7 9	R chroma signal input pin A (RINA) G chroma signal input pin A (GINA) B chroma signal input pin A (BINA) R chroma signal input pin B (RINB) G chroma signal input pin B (GINB) B chroma signal input pin B (BINB)	$3.5 \mathrm{~V}$ when selected OV when not selected		RGB signals are switched in two channels. When selected by SW, the DC potential is approximately 3.5 V , and when not selected, the DC potential is about 0 V .
27 29 31	B chroma signal input pin (BOUT) G chroma signal input pin (GOUT) R chroma signal input pin (ROUT)	1.85 V		Power save function is used when PSH pin is set to high level.
8 13	Power save input pin (PSH) Control input pin (CTL)	OV		PSH Pin Power save off $\leqq 1.5 \mathrm{~V}$ Power save on $\geqq 3.5 \mathrm{~V}$ CTL Pin Input $\mathrm{A} \geqq 3.5 \mathrm{~V}$ Input $\mathrm{B} \leqq 1.5 \mathrm{~V}$

OBH7659FS

Pin No.	Pin name	Reference potential	Equivalent circuit	Function
14	VD signal input pin A (VDINA)			
15	Vo signal input pin B (VDINB)			
16	VD signal output pin (VDOUT)			
17	SDA signal output pin (SDAIO)			
18	SDA signal input pin B (SDAIOB)			$\mathrm{VD}, \mathrm{Hd}, \mathrm{SDA}$, and SCL are
19	SDA signal input pin A (SDAIOA)	OV		switched in two channels. Bidirectional access (I/O) is
20	SCL signal input pin B (SCLIOB)			enabled by the CMOS analog SW.
22	SCL signal input pin A (SCLIOA)			
23	SCL signal output pin (SCLIO)			
24	HD signal input pin B (HDINB)			
25	HD signal input pin A (HDINA)			
26	HD signal output pin (HDOUT)			
2	R GND pin (RGND)	OV	-	This is the GND pin for the R video SW block.
4	$\begin{aligned} & \text { G GND pin } \\ & \text { (GGND) } \end{aligned}$	OV	-	This is the GND pin for the B video SW block.
6	B GND pin (BGND)	OV	-	This is the GND pin for the G video SW block, C-MOS SW block.
10	C-MOS supply voltage pin (VDD)	5 V	-	This is the VDD pin for the C-MOS SW block.
28	B supply voltage pin (BVcc)	5 V	-	This is the Vcc pin for the B video SW block
30	G supply voltage pin (GVcc)	5 V	-	This is the Vcc pin for the G video SW block
32	R supply voltage pin (RVcc)	5 V	-	This is the Vcc pin for the R video SW block

- Description of operations

OBA7657F

1) Analog SW block

Two channels of RGB signals can be switched. IN1 can be selected when high-level voltage is applied to the CTL pin, and IN2 can be selected when low level voltage is applied.
2) Digital SW block

This block switches between two channels of HD and VD ynchronization signals. HD and VD synchronization signals are output for IN1 when high-level voltage is applied to the CTL pin, and these signals are output for IN2 when a low-level voltage is applied to the CTL pin.
3) Synchronization signal separation block

This block separates composite signals (Sync on Green) and synchronization signals and outputs positive-electrode composite synchronization signals. When an HD signal is being input, the synchronization signal detector operates and stops the synchronization signal separation circuit. A low-level output voltage is used for output. The time at which the synchronization signal separation circuit will be stopped can be set using external time constants for the circuit detection pin.

I/O relations

Input		Output			
HD	VD	Sync on Green	HD	VD	Composite Sync
-	-	O	-	-	O
O	-	O	O	-	-
-	O	O	-	O	O
O	O	O	O	O	-
O	-	-	O	-	-
-	O	-	-	O	-
O	O	-	O	O	-

OBH7659FS

1) Analog SW block
R, G, and B chroma signals are switched in two channels. INA is selected by applying a high-level voltage to the CTL pin, and INB is selected by applying a low-level voltage. When the power save pin (pin 8) is set to high level, the current to the SW block's output transistors is reduced to lower the circuit current. Even during low power mode, signal switching can be performed normally as long as there is no drop in frequency characteristics.
2) CMOS analog SW block

SDA and SDC signals are switched via an I ${ }^{2} \mathrm{C}$ bus to handle two channels of HD and VD synchronization signals, and to exchange information bidirectional between a computer and a monitor. The switching circuits used by this IC handle are configured as CMOS analog switches in order to handle $I^{2} \mathrm{C}$ BUS signals and to transmit input and output signals bidirectional. (ON resistance: Ron 200Ω typ.)

- Application circuit

OBA7657F

Fig. 3

OBH7659FS

Fig. 4

- Reference data

OBA7657F

Fig. 5 Frequency characteristic

Fig. 8 Minimum SYNC separation characteristic

Fig. 6 Interchannel crosstalk

Fig. 9 Quiescent current vs. Temperature

Fig. 11 interchannel crosstalk

Fig. 7 Input/output delay timevs. Temperatur

Fig. 12 Frequency characteristics

Fig. 10 Circuit current vs. Supply voltage

- Notes for use

OBA7657F, BH7659FS

1) Numbers and data in entries are representative design values and are not guaranteed values of the items.
2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
3) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.
4) GND potential

Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.
5) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.
6) Shorts between pins and misinstallation

When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.
7) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.

OBA7657F

8) External resistance for analog SW block

The frequency characteristics of analog switches vary according to the output load capacity. Set an external resistance value of R0 to keep frequency characteristics as flat as possible.
9) Polarity of input coupling capacitor

When this IC is switched, variation is approximately 3.7 V when the input pin's DC voltage has been selected, but is 0 V when the input pin's DC voltage has not been selected. Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not.
10) High-frequency characteristics of input coupling capacitor

Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for input, be sure to insert high-frequency oriented ceramic capacitors (approximately $0.01 \mu \mathrm{~F}$) in parallel.
11) Layout of target board

Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to the IC's power supply pin. Also, use as large a GND pattern as possible.
12) Switching speed

Since this IC changes the DC voltage of input pins when switching, some time is required for switching. The amount of switching time can be determined by time constants that are in turn determined by the capacity of the coupling capacitor connected to the input pin, and the IC's internal input resistance. When using the recommended input coupling capacitor whose capacitance is $47 \mu \mathrm{~F}$, the switching time is approximately 0.5 seconds.

OBH7659FS

13) External resistance for analog SW block

The frequency characteristics of analog switches vary according to the output load capacity. Set an external resistance value of R0 to keep frequency characteristics as flat as possible.
14) Polarity of input coupling capacitor

When this IC is switched, variation is approximately 3.5 V when the input pin's DC voltage has been selected, but is 0 V when the input pin's DC voltage has not been selected. Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not.
15) High frequency characteristics of input coupling capacitor

Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for input, be sure to insert high-frequency oriented ceramic capacitors (approximately $0.01 \mu \mathrm{~F}$) in parallel.
16) Layout of target board

Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to the IC's power supply pin. Also, use as large a GND pattern as possible.

-Ordering part number

Part No.
 BA
 BH

Part No.
7657
7659

Package F : SOP24
FS: SSOP-A32

Packaging and forming specification E2: Embossed tape and reel

SOP24

SSOP-A32

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

