阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

74H1G66

SINGLE BILATERAL SWITCH

- HIGH SPEED: $\mathrm{t}_{\mathrm{PD}}=4 \mathrm{~ns}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- LOW POWER DISSIPATION:
$I_{C C}=1 \mu A(M A X$.$) at T_{A}=25^{\circ} \mathrm{C}$
- HIGH NOISE IMMUNITY:
$\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$ (MIN.)
- LOW "ON" RESISTANCE:
$\mathrm{R}_{\mathrm{ON}}=50 \Omega$ (TYP.) AT $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} \mathrm{I}_{\mathrm{I} / \mathrm{O}}=100 \mu \mathrm{~A}$
- SINE WAVE DISTORTION:
0.042% AT $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V} \mathrm{f}=1 \mathrm{KHz}$
- WIDE OPERATING RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=2 \mathrm{~V}$ TO 12 V

DESCRIPTION

The 74H1G66 is a CMOS SINGLE BILATERAL SWITCH fabricated in silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. It achieves high speed performance combined with true CMOS low power consumption.
The C input is provided to control the switch and it's compatible with standard CMOS output; the switch is ON (port I/O is connected to Port O/I) when the C input is held high and OFF (high

ORDER CODES

PACKAGE	T \& R
SOT23-5L	74H1G66STR

impedance state exists between the two ports) when C is held low.
All inputs and output are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	I/O	Independent Input/Output
2	O/I	Independent Output/Input
3	GND	Ground (OV)
4	C	Enable Input (Active HIGH)
5	V $_{\text {CC }}$	Positive Supply Voltage

TRUTH TABLE

\mathbf{C}	SWITCH FUNCTION
H	ON
L	OFF *

* High Impedance State

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +13.0	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	DC Input/Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IC}}$	DC Control Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\mathrm{IOK}}$	DC Input/Output Diode Current	± 20	mA
I_{IK}	DC Control Input Diode Current	± 20	mA
I_{O}	DC Output Source Sink Current per Output Pin	± 25	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	$500\left(^{*}\right)$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
(*) 500 mW at $65^{\circ} \mathrm{C}$; derate to 300 mW by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	2 to 12	V
$\mathrm{~V}_{\mathrm{I}}$	Control Input Voltage	0 to V_{CC}	V
$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	Input/Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time on control pin		0 to 1000
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	ns
		$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	to 500
	$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0 to 400	ns
		$\mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	0 to 250
ns			

DC SPECIFICATIONS

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	2.0		1.5			1.5		1.5		
		4.5		3.15			3.15		3.15		
		9.0		6.3			6.3		6.3		V
		12.0		8.4			8.4		8.4		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	2.0				0.5		0.5		0.5	
		4.5				1.35		1.35		1.35	
		9.0				2.7		2.7		2.7	V
		12.0				3.6		3.6		3.6	
R_{ON}	ON Resistance	4.5	$\begin{gathered} \mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ \mathrm{I}_{\mathrm{I} / \mathrm{O}} \leq 1 \mathrm{~mA} \end{gathered}$		96	170		200		250	
		9.0			55	85		100		150	Ω
		12.0			45	80		90		120	
R_{ON}	ON Resistance	4.5	$\begin{gathered} \mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ \mathrm{I}_{\mathrm{I} / \mathrm{O}} \leq 1 \mathrm{~mA} \end{gathered}$		70	100		130		160	Ω
		9.0			50	75		95		115	
		12.0			45	70		90		110	
IOFF	Input/Output Leakage Current (SWITCH OFF)	12.0	$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{IL}} \\ \hline \end{array}$			± 0.1		± 1		± 2	$\mu \mathrm{A}$
I Z	Switch Input Leakage Current (SWITCH ON, OUTPUT OPEN)	12.0	$\begin{gathered} \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{IH}} \end{gathered}$			± 0.1		± 1		± 2	$\mu \mathrm{A}$
I_{N}	Control Input Leakage Current	6.0	$\mathrm{V}_{\text {IC }}=5.5 \mathrm{~V}$ or GND			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	6.0	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			1		10		20	$\mu \mathrm{A}$
		9.0				4		40		80	
		12.0				8		80		160	

74H1G66

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\Phi_{1 / \mathrm{O}}$	Phase Difference Between Input and Output	2.0			10	50		65		75	ns
		4.5			4	10		15		18	
		9.0			3	8		13		16	
		12.0			3	7		10		12	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	2.0	$\mathrm{R}_{\mathrm{L}}=500 \Omega$		18	100		125		150	ns
		4.5			8	20		25		30	
		9.0			6	12		22		27	
		12.0			6	12		18		25	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	2.0	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$		20	115		145		175	ns
		4.5			10	23		29		35	
		9.0			8	20		25		30	
		12.0			8	18		22		27	
	Maximum Control Input Frequency	2.0	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{O}}=1 / 2 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$		30						MHz
		4.5			30						
		9.0			30						
		12.0			30						

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Value							Unit
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
			Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance			5	10		10		10	pF
$\mathrm{C}_{1 / 0}$	Switch Terminal Capacitance			10						pF
$\mathrm{C}_{\text {IOS }}$	Feed through Capacitance			0.5						pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)			15						pF

1) $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C(o p r)}=C_{P D} \times V_{C C} \times f_{I N}+I_{C C}$

ANALOG SWITCH CHARACTERISTICS (GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition			Value	Unit
		V_{cc} (V)	$\begin{gathered} V_{1 N} \\ \left(V_{p-p}\right) \end{gathered}$		Typ.	
	Sine Wave Distortion (THD)	4.5	4	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{KHz} \mathrm{R} \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	0.04	\%
		9.0	8		0.04	
$\mathrm{f}_{\text {MAX }}$	Frequency Response (Switch ON)	4.5	Adjust f_{IN} voltage to obtain 0 dBm at V_{OS}. Increase f_{IN} Frequency until dB meter reads -3dB$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		150	MHz
		9.0			180	
	Feed through Attenuation (Switch OFF)	4.5	$\mathrm{V}_{\text {IN }}$ is centered at $\mathrm{V}_{\mathrm{CC}} / 2$ Adjust $f_{\text {IN }}$ Voltage to obtained 0 dBm at $\mathrm{V}_{\text {IS }}$ $R_{L}=600 \Omega, C_{L}=50 \mathrm{pF}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{KHz}$ sine wave		-60	dB
		9.0			-60	
	Crosstalk (Control Input to Signal Output)	4.5	$R_{L}=600 \Omega, C_{L}=50 \mathrm{pF}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{KHz}$ square wave $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$		60	mV
		9.0			60	

SWITCHING CARACTERISTICSTESTCIRCUIT

CROSSTALK (control to output

BANDWIDTH AND FEEDTHROUGH ATTENUATION

MAXIMUM CONTROL FREQUENCY
$\mathrm{C}_{1-\mathrm{O}}, \mathrm{C}_{1 / \mathrm{O}}$

SOT23-5L MECHANICAL DATA

DIM.	mm.			mils		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	0.90		1.45	35.4		57.1
A1	0.00		0.15	0.0		5.9
A2	0.90		1.30	35.4		51.2
b	0.35		0.50	13.7		19.7
C	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
E	2.60		3.00	102.3		118.1
E1	1.50		1.75	59.0		68.8
e		0.95			37.4	
e1		1.9		74.8		
L	0.35		0.55	13.7		21.6

Tape \& Reel SOT23-xL MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			180			7.086
C	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
T			14.4			0.567
Ao	3.13	3.23	3.33	0.123	0.127	0.131
Bo	3.07	3.17	3.27	0.120	0.124	0.128
Ko	1.27	1.37	1.47	0.050	0.054	0.0 .58
Po	3.9	4.0	4.1	0.153	0.157	0.161
P	3.9	4.0	4.1	0.153	0.157	0.161

Note: Drawing not in scale

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com

