

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

FAIRCHILD

SEMICONDUCTOR

74VHC4316 Quad Analog Switch with Level Translator

General Description

These devices are digitally controlled analog switches implemented in advanced silicon-gate CMOS technology. These switches have low "on" resistance and low "off" leakages. They are bidirectional switches, thus any analog input may be used as an output and vice-versa. Three supply pins are provided on the 4316 to implement a level translator which enables this circuit to operate with 0V–6V logic levels and up to $\pm 6V$ analog switch levels. The 4316 also has a common enable input in addition to each switch's control which when HIGH will disable all switches to their off state. All analog inputs and outputs and digital

inputs are protected from electrostatic damage by diodes to $\rm V_{\rm CC}$ and ground.

April 1994

Revised April 1999

Features

- Typical switch enable time: 20 ns
- Wide analog input voltage range: ±6V
- Low "on" resistance: 50 typ. $(V_{CC}-V_{EE} = 4.5V)$ 30 typ. $(V_{CC}-V_{EE} = 9V)$
- Low quiescent current: 80 μA maximum (74VHC)
- Matched switch characteristics
- Individual switch controls plus a common enable
- Pin functional compatible with 74HC4316

Ordering Code:

Order Number	Package Number	Package Description
74VHC4316M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74VHC4316WM	M16B	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74VHC4316MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC4316N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Truth Table

Inj	outs	Switch			
E	CTL	I/O–O/I			
н	Х	"OFF"			
L	L	"OFF"			
L	н	"ON"			

Connection Diagram

Logic Diagram

© 1999 Fairchild Semiconductor Corporation DS011678.prf

74VHC4316

(Note 2)

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to +7.5V	
Supply Voltage (V _{EE})	+0.5 to -7.5V	s
DC Control Input Voltage (VIN)	-1.5 to V _{CC} +1.5V	S
DC Switch I/O Voltage (VIO)	$V_{\text{EE}} – 0.5$ to $V_{\text{CC}} + 0.5 \text{V}$	D
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA	
DC Output Current, per pin (I _{OUT})	±25 mA	С
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA	Ir
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	
Power Dissipation (P _D) (Note 3)	600 mW	
S.O. Package only	500 mW	
Lead Temperature (T _L)		
(Soldering 10 seconds)	260°C	No
		ag

		Min	Мах	Units	
Supply Voltage	(V _{CC})	2	6	V	
Supply Voltage	(V _{EE})	0	-6	V	
DC Input or Out	put Voltage	0	V _{CC}	V	
(V _{IN} , V _{OUT})					
Operating Temp	erature Range (T _A)	-40	+85	°C	
Input Rise or Fa	II Times				
(t _r , t _f)	$V_{CC} = 2.0V$		1000	ns	
	$V_{CC} = 4.5V$		500	ns	
	$V_{CC} = 6.0V$		400	ns	
	$V_{CC} = 12.0V$		250	ns	

C Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	VEE	V _{CC}	T _A = 25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units
			*EE		Тур	Gua	ranteed Limits	Units
VIH	Minimum HIGH			2.0V		1.5	1.5	
	Level Input			4.5V		3.15	3.15	V
	Voltage			6.0V		4.2	4.2	
V _{IL}	Maximum LOW			2.0V		0.5	0.5	
	Level Input			4.5V		1.35	1.35	V
	Voltage			6.0V		1.8	1.8	
R _{ON}	Minimum "ON"	$V_{CTL} = V_{IH},$	GND	4.5V	100	170	200	Ω
	Resistance	I _S = 2.0 mA	-4.5V	4.5V	40	85	105	
	(Note 5)	$V_{IS} = V_{CC}$ to V_{EE} (<i>Figure 1</i>)	-6.0V	6.0V	30	70	85	
		$V_{CTL} = V_{IH},$	GND	2.0V	100	180	215	
		$I_{S} = 2.0 \text{ mA}$	GND	4.5V	40	80	100	
		$V_{IS} = V_{CC}$ or V_{FE}	-4.5V	4.5V	50	60	75	
		(Figure 1)	-6.0V	6.0V	20	40	60	
R _{ON}	Maximum "ON"	V _{CTL} = V _{IH}	GND	4.5V	10	15	20	
	Resistance	$V_{IS} = V_{CC}$ to V_{EE}	-4.5V	4.5V	5	10	15	Ω
	Matching		-6.0V	6.0V	5	10	15	
I _{IN}	Maximum Control	$V_{IN} = V_{CC} \text{ or } GND$	GND	6.0V		±0.1	±1.0	μA
	Input Current							
I _{IZ}	Maximum Switch	$V_{OS} = V_{CC} \text{ or } V_{EE}$						
	"OFF" Leakage	$V_{IS} = V_{EE} \text{ or } V_{CC}$	GND	6.0V		±30	±300	nA
	Current	$V_{CTL} = V_{IL}$	-6.0V	6.0V		±50	±500	
		(Figure 2)						
I _{IZ}	Maximum Switch	$V_{IS} = V_{CC}$ to V_{EE}						
	"ON" Leakage	$V_{CTL} = V_{IH},$	GND	6.0V		±20	±75	nA
	Current	$V_{OS} = OPEN$	-6.0V	6.0V		±30	±150	
		(Figure 3)						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	GND	6.0V		1.0	10	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$	-6.0V	6.0V		4.0	40	

Note 4: For a power supply of 5V \pm 10% the worst case on resistances (R_{ON}) occurs for VHC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5V values should be used.

Note 5: At supply voltages (V_{CC}-V_{EE}) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

$V_{CC} = 2.0V - 6.0V, V_{EE} = 0V - 6$			Joined		T∆=H	-25°C	T _A =-40°C to +85°C	
Symbol	Parameter	Conditions	VEE	V _{cc}	Тур		ranteed Limits	Units
t _{PHL} , t _{PLH}	Maximum Propagation		GND	3.3V	15	30	37	
	Delay Switch In to		GND	4.5V	5	10	13	ns
	Out		-4.5V	4.5V	4	8	12	
			-6.0V	6.0V	3	7	11	
t _{PZL} , t _{PZH}	Maximum Switch Turn	$R_L = 1 k\Omega$	GND	3.3V	25	97	120	
FZL, FZH	"ON" Delay		GND	4.5V	20	35	43	ns
	(Control)		-4.5V	4.5V	15	32	39	
	(control)		-6.0V	6.0V	14	30	37	
t _{PHZ} , t _{PLZ}	Maximum Switch Turn	$R_L = 1 k\Omega$	GND	3.3V	35	145	180	
PHZ, PLZ	"OFF" Delay		GND	4.5V	25	50	63	ns
	(Control)		-4.5V	4.5V	20	44	55	110
	(control)		-6.0V	6.0V	20	44	55	
t _{PZL} , t _{PZH}	Maximum Switch		GND	3.3V	20	120	150	
PZL [,] PZH	Turn "ON" Delay		GND	4.5V	20	41	52	ns
	(Enable)		-4.5V	4.5V	19	38	48	110
	(Enable)		-6.0V	6.0V	18	36	45	
t _{PLZ} , t _{PHZ}	Maximum Switch		GND	3.3V	42	155	190	
PLZ [,] PHZ	Turn "OFF" Delay		GND	4.5V	28	53	67	ns
	(Enable)		-4.5V	4.5V	23	47	59	110
	(LINDIC)		-4.0V	4.5V 6.0V	23	47	59	
	Minimum Frequency	$R_L = 600\Omega$, $V_{IS} = 2V_{PP}$	0.0 V	4.5	40	-11	00	
	Response (<i>Figure 7</i>)	at $(V_{CC} - V_{EE}/2)$	-4.5V	4.5V	100			MHz
	$20 \log (V_{OS}/V_{IS}) = -3 \text{ dB}$	(Note 6)(Note 7)	-4.51	4.5 V	100			1011 12
	Control to Switch	$R_L = 600\Omega$, f = 1 MHz	0V	4.5V	100			
	Feedthrough Noise	$C_{L} = 50 \text{ pF}$	-4.5V	4.5V	250			mV
	(Figure 8)	(Note 7)(Note 8)	-4.51	4.5 V	200			iii v
	Crosstalk Between	$R_L = 600\Omega$, f = 1 MHz	0V	4.5V	-52			
	any Two Switches	IN_ = 00052, I = I WI IZ	-4.5V	4.5V	-52			dB
	(Figure 9)		- 4 .5V	4.5 V	-30			uD
	Switch OFF Signal	$R_I = 600\Omega$, f = 1 MHz						
	Feedthrough	$V_{CTL} = V_{IL}$	0V	4.5V	-42			dB
	Isolation	VCTL - VIL	-4.5V	4.5V	-42			uр
	(Figure 10)	(Note 7)(Note 8)	- 4 .5V	4.5 V				
THD	Sinewave Harmonic	$R_{L} = 10 \text{ K}\Omega, C_{L} = 50 \text{ pF},$						
IIID	Distortion	f = 1 KHz						%
	(Figure 11)	$V_{IS} = 4 V_{PP}$	0V	4.5V	0.013			70
	(rigure ri)	V _{IS} = 8 V _{PP}	-4.5V	4.5V	0.008			
<u> </u>	Maximum Control	VIS – O VPP	-4.51	4.5 V	5			pF
C _{IN}	Input Capacitance				5			p
C _{IN}	Maximum Switch				35			pF
UN	Input Capacitance				30			h _L
C	Maximum Feedthrough	V _{CTL} = GND			0.5			pF
C _{IN}	Capacitance	VCTL = GIND			0.5			μr
c	Power Dissipation				15			pF
C _{PD}	Capacitance				10			рг

74VHC4316

Note 7: V_{IS} is centered at V_{CC} - V_{EE} /2.

Note 8: Adjust for 0 dBm.

www.fairchildsemi.com

4

Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the analog switch input pins, the voltage drop across the switch must not exceed 0.6V (calculated from the ON resistance).

74VHC4316

⁷⁴VHC4316 Quad Analog Switch with Level Translator

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.