阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

Absolute Maximum Ratings(Note 2) (Note 3)			Recommended Operating Conditions				
Supply V DC Cont DC Switch Clamp D DC Outp DC V_{Cc} (lcc) Storage Power D S.O. P: Lead Ten (Solde DC	oltage (V_{CC}) ol Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$ I/O Voltage (V_{IO}) ode Current ($\mathrm{I}_{\mathrm{K}}, \mathrm{I}_{\mathrm{OK}}$) t Current, per pin (lout) or GND Current, per pin emperature Range ($\mathrm{T}_{\mathrm{STG}}$) ssipation (P_{D}) (Note 4) ackage only perature (T_{L}) ing 10 seconds) ectrical Charact	$\begin{array}{r} -0.5 \text { to }+15 \mathrm{~V} \\ -1.5 \text { to } \mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EE}}-0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \\ \pm 20 \mathrm{~mA} \\ \pm 25 \mathrm{~mA} \end{array}$	Supply Voltag DC Input or O ($\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$) Operating Tem Input Rise or $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=9.0 \mathrm{~V} \end{aligned}$ Note 2: Absolute age to the device Note 3: Unless oth Note 4: Power Dis $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65	ut Vol rature Time mum occur. se spe tion te $85^{\circ} \mathrm{C}$	(T_{A}) t_{f}) are thos l voltag ure dera	Min Max 2 12 0 $\mathrm{~V}_{\mathrm{CC}}$ -40 +85 1000 500 400 alues beyond whi re referenced to g — plastic "N" pa	Units V V ${ }^{\circ} \mathrm{C}$ ns ns ns damund age: -
Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	Units
				Typ	Guaranteed Limits		
$\overline{\mathrm{V}_{1 \mathrm{H}}}$	Minimum HIGH Level Input Voltage		$\begin{gathered} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline 1.5 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 5.3 \\ 8.4 \end{gathered}$	V V v V
V_{IL}	Maximum LOW Level Input Voltage		$\begin{gathered} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 2.7 \\ 3.6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$
R_{ON}	Maximum "ON" Resistance See (Note 6)	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & \text { (Figure 1) } \\ & \hline \end{aligned}$	4.5 V 9.0 V 12.0 V	100 50 30	$\begin{gathered} 170 \\ 85 \\ 70 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 105 \\ 85 \\ \hline \end{gathered}$	Ω Ω Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \text { (Figure 1) } \end{aligned}$	 2.0 V 4.5 V 9.0 V 12.0 V	120 50 35 20	$\begin{aligned} & 180 \\ & 80 \\ & 60 \\ & 40 \end{aligned}$	$\begin{aligned} & 215 \\ & 100 \\ & 75 \\ & 60 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
$\mathrm{R}_{\text {ON }}$	Maximum "ON" Resistance Matching	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{I H} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \end{aligned}$	$\begin{gathered} \hline 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \\ \hline \end{gathered}$	10 5 5	$\begin{aligned} & \hline 15 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
$\overline{I_{N}}$	Maximum Control Input Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=2-6 \mathrm{~V} \end{aligned}$			± 0.05	± 0.5	$\mu \mathrm{A}$
$\bar{I} \mathrm{I}$	Maximum Switch "OFF" Leakage Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IL}} \text { (Figure 2) } \end{aligned}$	$\begin{gathered} \hline 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \\ \hline \end{gathered}$	10 15 20	$\begin{aligned} & \pm 60 \\ & \pm 80 \\ & \pm 100 \end{aligned}$	$\begin{aligned} & \hline \pm 600 \\ & \pm 800 \\ & \pm 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\overline{1 / Z}$	Maximum Switch "ON" Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{HH}} \\ & \mathrm{~V}_{\mathrm{OS}}=\text { OPEN (Figure 3) } \end{aligned}$	$\begin{gathered} \hline 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	10 15 20	$\begin{aligned} & \pm 40 \\ & \pm 50 \\ & \pm 60 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 200 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
${ }_{\text {cc }}$	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{l}_{\text {OUT }}=0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Note 5: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistance (R_{ON}) occurs for VHC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{H} value at 5.5 V is 3.85 V .) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5 V values should be used. Note 6: At supply voltages ($\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$) approaching 2 V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.							

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}-6.0 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}-12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$（unless otherwise specified）

[^0]AC Test Circuits and Switching Time Waveforms (Continued)

Crosstalk and Distortion Test Circuits

Crosstalk and Distortion Test Circuits (Continued)

FIGURE 11. Sinewave Distortion

Typical Performance Characteristics

Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the analog switch input pins, the voltage drop across the switch must not exceed 0.6 V (calculated from the ON Resistance).

Physical Dimensions inches（millimeters）unless otherwise noted

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]: www.fairchildsemi.com

