

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

December 2001 Revised December 2001

FIN1532 5V LVDS 4-Bit High Speed Differential Receiver

General Description

FAIRCHILD

SEMICONDUCTOR

This quad receiver is designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The receiver translates LVDS levels, with a typical differential input threshold of 100 mV, to LVTTL signal levels. LVDS provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high speed transfer of clock and data.

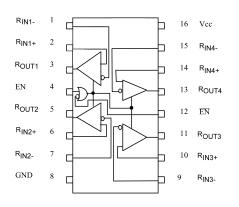
The FIN1532 can be paired with its companion driver, the FIN1531, or any other LVDS driver.

Features

- Greater than 400Mbs data rate
- 5V power supply operation
- 0.5 ns maximum differential pulse skew
- 3 ns maximum propagation delay
- Low power dissipation
- Power-Off protection for inputs and outputs
- Fail safe protection for open-circuit, shorted and terminated receiver inputs
- Meets or exceeds the TIA/EIA-644 LVDS standard
- Pin compatible with equivalent RS-422 and PECL devices
- 16-Lead SOIC and TSSOP packages save space

Ordering Code:

Order Number	Package Number	Package Description		
FIN1532M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow		
FIN1532MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide		
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.				


Pin Descriptions

Pin Name	Description
R _{OUT1} , R _{OUT2} , R _{OUT3} , R _{OUT4}	LVTTL Data Outputs
$R_{IN1+}, R_{IN2+}, R_{IN3+}, R_{IN4+}$	Non-inverting LVDS Inputs
R _{IN1-} , R _{IN2-} , R _{IN3-} , R _{IN4-}	Inverting LVDS Inputs
EN	Driver Enable Pin
EN	Inverting Driver Enable Pin
V _{CC}	Power Supply
GND	Ground

Function Table

	Input			Outputs
EN	EN	R _{IN+}	R _{IN+}	R _{OUT}
Н	Х	Н	L	Н
Н	Х	L	Н	L
Н	Х	Fail Safe	Condition	Н
Х	L	Н	L	Н
Х	L	L	Н	L
Х	L	Fail Safe	Condition	Н
L	Н)	X	Z

Connection Diagram

Top View

© 2001 Fairchild Semiconductor Corporation DS500504

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5 V to +6 V
DC Input Voltage (V _{IN})	
Enable Inputs	-0.5 V to +6 V
Receiver Inputs	-0.5 V to +6 V
DC Output Voltage (V _{OUT})	-0.5 V to +6 V
DC Output Current (I _O)	16 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Max Junction Temperature (T _J)	150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
ESD (Human Body Model)	≥ 8000 V
ESD (Machine Model)	≥ 300 V

Recommended Operating Conditions

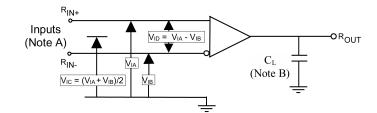
Supply Voltage (V _{CC})	4.5 V to 5.5 V
Input Voltage (V _{IN})	
Enable Inputs	0 to V _{CC}
Receiver Inputs	0 to 2.4 V
Magnitude of Differential Voltage	
(V _{ID})	100 mV to 600 mV
Common-mode Input Voltage	
(V _{IC})	V _{ID} /2 to (2.4– V _{ID} /2)
Operating Temperature (T _A)	-40°C to +85°C

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

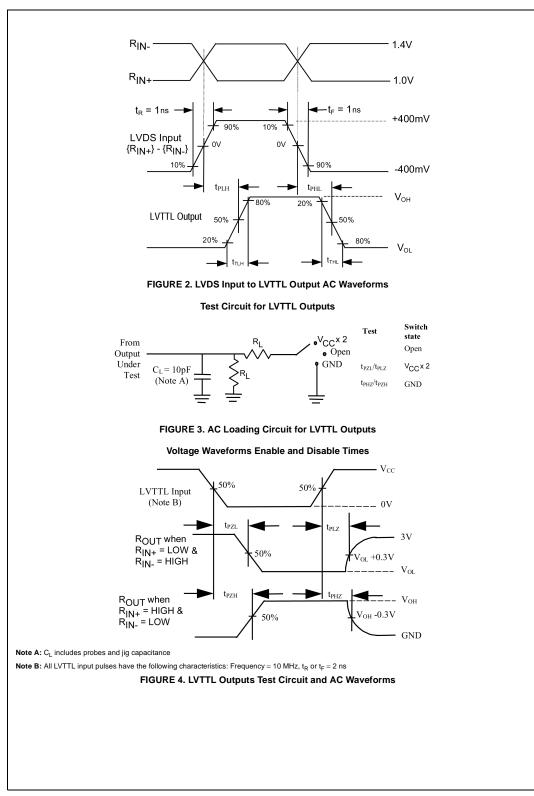
Symbol	Parameter	Test Conditions	Min	Typ (Note 2)	Max	Units
V _{TH}	Differential Input Threshold HIGH	V _{IC} = +1.2V, See Figure 1			100	mV
V _{TL}	Differential Input Threshold LOW	V _{IC} = +1.2V, See Figure 1	-100			mV
I _{IN}	Input Current EN or EN	$V_{IN} = 0V \text{ or } V_{CC}, V_{CC} = 5.5 \text{ or } 0V$			±20	μA
	Input Current Receiver Inputs	$V_{IN} = 0V \text{ or } 2.4 \text{ V}, V_{CC} = 5.5 \text{ or } 0V$			±20	μA
V _{IH}	Input High Voltage (EN or EN)		2.0		V _{CC}	V
V _{IL}	Input Low Voltage (EN or EN)		GND		0.8	V
V _{OH}	Output HIGH Voltage	$I_{OH} = -100 \ \mu A$	V _{CC} -0.2	4.98		v
		I _{OH} = -8 mA	3.8	4.68		v
V _{OL}	Output LOW Voltage	I _{OH} = 100 μA		0.01	0.2	v
		I _{OL} = 8 mA		0.22	0.5	
V _{IK}	Input Clamp Voltage	$I_{IK} = -18 \text{ mA}$	-1.5	-0.8		V
I _{OZ}	Disabled Output Leakage Current	$EN = 0.8$ and $\overline{EN} = 2V$, $V_{OUT} = 5.5V$ or $0V$			±20	μA
I _{O(OFF)}	Power-OFF Output Current	$V_{OUT} = 0V$ or 5.5V, $V_{CC} = 0V$			50	μA
I _{OS}	Output Short Circuit Test	Receiver Enabled, V _{OUT} = 0V (one output shorted at a time)	-15		-100	mA
I _{CCZ}	Disabled Power Supply Current	Receiver Disabled		1.2	5	mA
I _{CC}	Power Supply Current	Receiver Enabled, $R_{IN+} = 1V$ and $R_{IN-} = 1.4V$		11	17	mA
I _{PU/PD}	Output Power Up/Power Down	Receiver Enabled, $R_{IN+} = 1.4V$ and $R_{IN-} = 1V$ $V_{CC} = 0V$ to 2.0V		15	23 +20	μA
יפט/פט	High Z Leakage Current				<u></u> 0	μΑ
C _{IN}	Input Capacitance			5.5		pF
COUT	Output Capacitance			4.5		pF

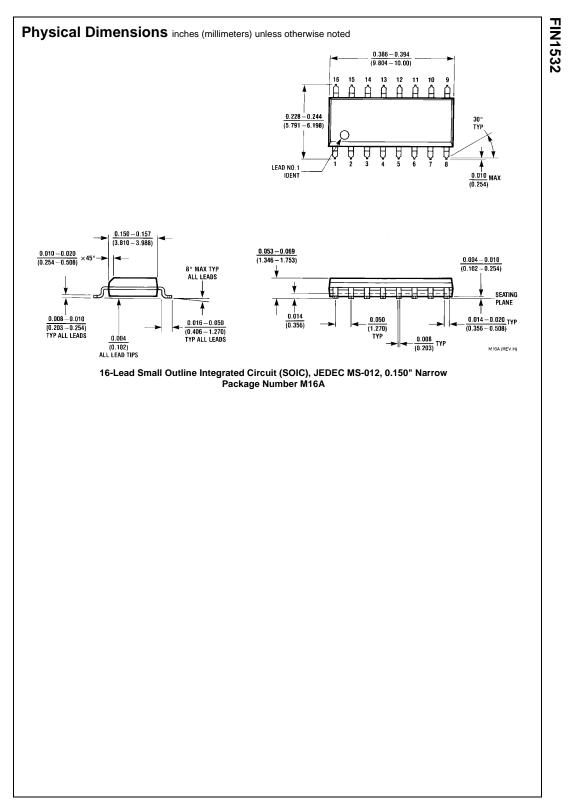

Note 2: All typical values are at T_A = 25°C and with V_{CC} = 5V.

Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Units
t _{PLH}	Propagation Delay LOW-to-HIGH		1.0	2.0	3.0	ns
t _{PHL}	Propagation Delay HIGH-to-LOW	$ V_{ID} = 400$ mV, $C_L = 10$ pF, $R_L = 1k\Omega$	1.0	2.0	3.0	ns
t _{TLH}	Output Rise Time (20% to 80%)	See Figure 1 and Figure 2		1.3		ns
t _{THL}	Output Fall Time (80% to 20%)			1.1		ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}	-		0.2	0.5	ns
t _{SK(LH)} , t _{SK(HL)}	Channel-to-Channel Skew (Note 4)			0.1	0.3	ns
t _{SK(PP)}	Part-to-Part Skew (Note 5)				1.0	ns
f _{MAX}	Maximum Operating Frequency (Note 6)	$R_L = 1k\Omega$, $C_L = 10 \text{ pF}$, See Figure 1 and Figure 2	200	260		MHz
t _{ZH}	LVTTL Output Enable Time from Z to HIGH	$R_L = 1k\Omega$, $C_L = 10 \text{ pF}$,		8	12.0	ns
t _{ZL}	LVTTL Output Enable Time from Z to LOW	See Figure 3 and Figure 4		8	12.0	ns
t _{HZ}	LVTTL Output Disable Time from HIGH to Z			4	8.0	ns
t _{LZ}	LVTTL Output Disable Time from LOW to Z			4	8.0	ns

Note 3: All typical values are at T_A = 25°C and with V_{CC} = 5V.

Note 4: t_{SK(LH)}, t_{SK(HL)} is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.


Note 5: $t_{SK(PP)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits. Note 6: f_{MAX} Criteria: Input $t_R = t_F < 1$ ns, $V_{ID} = 300$ mV, (1.05V to 1.35V pp), 50% duty cycle; Output duty cycle 40% to 60%, $V_{OL} < 0.5V$, $V_{OH} > 2.4V$. All channels switching in phase.



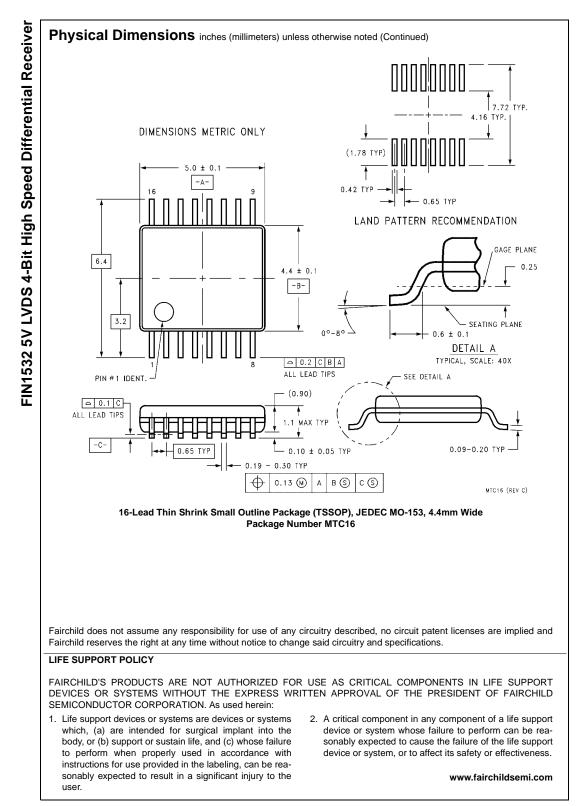

Note A: All input pulses have frequency = 10 MHz, t_R or t_F = 1 ns Note B: C_L includes all probe and jig capacitances

FIGURE 1. Differential Receiver Voltage Definitions and Propagation Delay

