

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

VARIABLE Q FILTER

ZXF103Q16, ZXF103EV

DESCRIPTION

The ZXF103 is a versatile analog high Q bandpass filter. It can be configured to provide pass or notch characteristics.

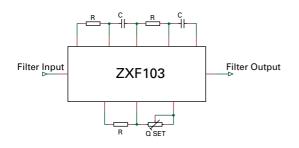
The basic filter section requires 2 resistors and 2 capacitors to set the centre frequency. The frequency range is up to 600kHz. Two external resistors control filter Q Factor. The Q can be varied up to 50.

APPLICATIONS

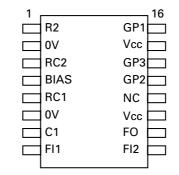
Many filter applications including: -

- Sonar and Ultrasonic Systems
- Line frequency notch
- Signalling
- Motion detection
- Instrumentation
- Low frequency telemetry

FEATURES AND BENEFITS


- Centre Frequency up to 1MHz
- Variable Q up to 50
- Low distortion
- Low noise
- Low power 25mW
- Devices easily cascaded
- Small QSOP16 package

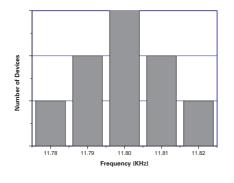
ORDERING INFORMATION


PART NUMBER	PACKAGE	PART MARK
ZXF103Q16	QSOP16	ZXF103

PART NUMBER	CONTAINER	INCREMENT
ZXF103Q16TA	Reel 7″ 178mm	500
ZXF103Q16TC	Reel 13" 330mm	2500

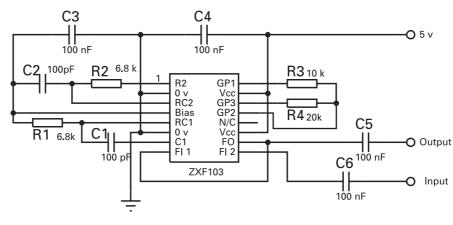
SYSTEM DIAGRAM

PINOUT

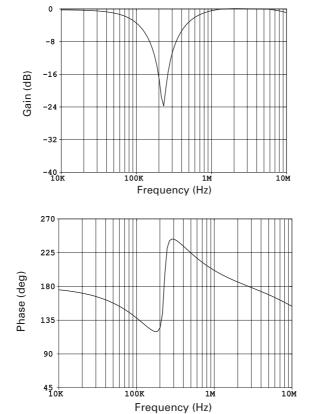

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin	7.0V (relative to 0V)
Operating temperature range	0 to 70°C
Storage temperature	-55 to 125°C

ELECTRICAL CHARACTERISTICS Test Conditions: Temperature =25°C, V_{CC} = 5.00V, 0V =0.00V, R_L=10k,C_L=10pF


GENERAL CHARACTERISTICS					
Parameter	Conditions	Min.	Typical	Max.	Units
Operating current			4.0	5.0	mA
Max. operating frequency	Vout=1.6V p-p Vout=1.0V p-p			600 1000	kHz
Q usable range		0.5		50	
Centre Frequency temperature coefficient	Q=30, fo = 1kHz		100		ppm/°C
Q temperature coefficient	Q=30, fo = 1kHz		0.1		% /°C
Voltage noise	1 – 100 kHz		20		nV/√ Hz
Input impedance		10	15	20	kΩ
Linear Output Range	Output load =10 k Ω		2		V pk-pk
Sink current			450		μA
Source current			450		μA
Output impedance			10		Ω

Histogram of Centre Frequency (Fo = 11.80KHz Q = 25)


Pin	Name	Function	
1	R2	Phase retard node	
2	0V	0 Volts	
3	RC2	Phase retard node	
4	BIAS	Internal bias generator	
5	RC1	Phase advance node	
6	0V	0 Volts	
7	C1	Phase advance node	
8	FI1	Filter input mode dependent	
9	F12	Filter input, mode dependent	
10	FO	Filter output for all modes	
11	Vcc	+5 Volt supply	
12	N/C	No connection	
13	GP2	Loop gain node	
14	GP3	Loop gain node	
15	Vcc	+5 Volt supply	
16	GP1	Loop gain node	

Filter Configurations and Responses Notch Filter

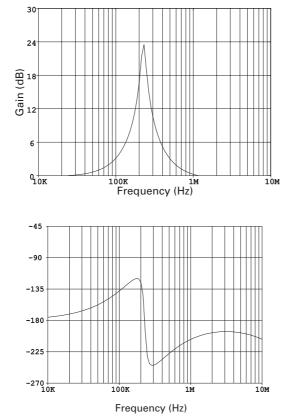
AC Filter Performance

 $Fo = \frac{1}{2 \pi RC}$


where R=R1=R2 and C=C1=C2

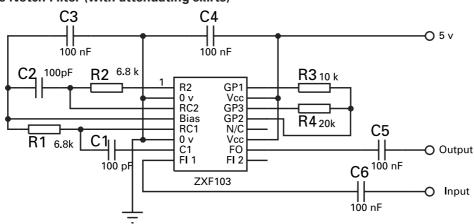
 $Q \propto \frac{R4}{R3}$

where R1,R2,R3 and R4 ${\geqslant}2k\Omega$ and C1 and C2 ${\geqslant}$ 50pF


See "Designing for a value of $\ensuremath{\mathsf{Q}}\xspace"$ for more details.

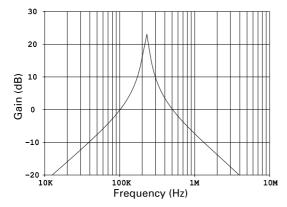
Filter Configurations and Responses (Continued) Inverse Notch Filter (with 0dB Stop Band)

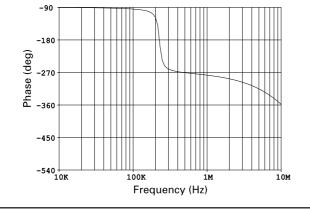
AC Filter Performance


 $Fo = \frac{1}{2\pi RC}$

where R=R1=R2 and C=C1=C2

 $Q \propto \frac{R4}{R3}$


where R1,R2,R3 and R4 ${\geqslant}2k\Omega$ and C1 and C2 ${\geqslant}$ 50pF



Filter Configurations and Responses (Continued) Inverse Notch Filter (with attenuating skirts)

AC Filter Performance

 $Fo = \frac{1}{2\pi RC}$

where R=R1=R2 and C=C1=C2

 $Q \ \propto \ \frac{R4}{R3}$

where R1,R2,R3 and R4 ${\geqslant}2k\Omega$ and C1 and C2 ${\geqslant}$ 50pF

See "Designing for a value of Q" for more details.

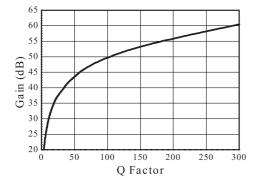
The skirt 'roll off' away from the peak is -20dB/Decade regardless of chosen $\Omega.$

Typical responses from the circuit with component values derived from the diagram.

ISSUE 2 - JULY 2002

Designing for a value of Q

As mentioned on the configuration pages, there is a proportional relationship between the ratio of R4 and R3, and Ω .

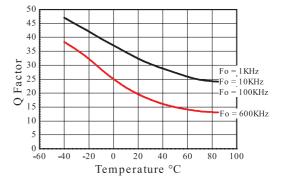

$$Q \propto \frac{R4}{R3}$$

These resistors define the gain of an inverting amplifier that determines the peak value of gain and therefore the Ω of the filter, as Ω is described as;

$$Q = \frac{Fo}{-3dBBandwidth}$$

This value of required gain is quite critical. As the maximum value of Q is approached, too much gain will cause the filter to oscillate at the centre frequency Fo. A small reduction of gain will cause the value of Q to fall significantly. Therefore, for high values of Q factor or tight tolerances of lower values of Q, the resistor ratio must be trimmed.

Typical Gain at Fo V Q Factor (Fo = 140KHz)



Frequency dependant effects must be accounted for in determining the appropriate gain. As the frequency increases, the effective circuit gain reduces. The required gain is nominally two but at higher frequencies it will need to be slightly greater than two in order to compensate for loss of gain and internal phase shifts.

This is not really a problem for circuits where the desired Fo remains constant, as the phase shifts are accounted for permanently. For designs where Q is high and Fo is to be 'swept', care must be taken that a gain appropriate at the highest frequency does not cause oscillation at the lowest.

Variation in Ω increases from device to device, as the value of Ω increases, due to internal gain spreads.

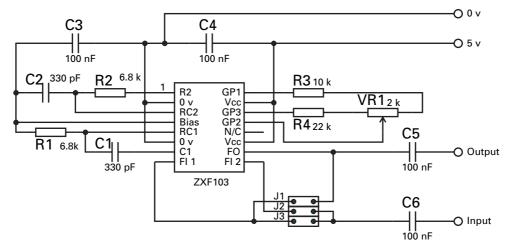
Q Factor V Temperature

ISSUE 2 - JULY 2002

6

EVALUATION BOARD

An evaluation board (ZXF103EV) is available to assist with in-system or stand-alone performance evaluation. The board can be set, by simple jumper links, to perform any of the filter characterisitics responses.

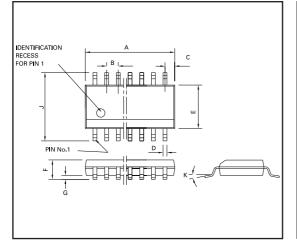

Evaluation boards can be purchased from our catalogue distributors.

Digi-Key North America <u>www.digikey.com</u> Tel: 1-800344-4539

Europe - Farnell <u>www.farnell.com</u> Tel: 44-113-263-6311



Evaluation Board Schematic


The evaluation board is designed for operation at 70kHz.

Notch	J1 and J2
Notch Pass 1	J2 and J3 (0dB Stop Band)
Notch Pass 2	J3 only (Attenuating skirts)

QSOP16 PACKAGE OUTLINE

QSOP16 PACKAGE DIMENSIONS

DIM	Millimetres		Inc	hes
	MIN	MAX	MIN	MAX
А	4.80	4.98	0.189	0.196
В	0.635		0.025	NOM
С	0.23 REF		0.009 REF	
D	0.20	0.30	0.008	0.012
E	3.81	3.99	0.15	0.157
F	1.35	1.75	0.053	0.069
G	0.10	0.25	0.004	0.01
J	5.79	6.20	0.228	0.244
К	0°	8°	0°	8°

Conforms to JEDEC MO-137AB Iss A

© Zetex plc 2002

Europe		Americas	Asia Pacific
Zetex plc	Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd
Fields New Road	Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza, Tower 1
Chadderton	D-81673 München	Hauppauge, NY11788	Hing Fong Road
Oldham, OL9 8NP			Kwai Fong
United Kingdom	Germany	USA	Hong Kong
Telephone (44) 161 622 4422	Telefon: (49) 89 45 49 49 0	Telephone: (631) 360 2222	Telephone: (852) 26100 611
Fax: (44) 161 622 4420	Fax: (49) 89 45 49 49 49	Fax: (631) 360 8222	Fax: (852) 24250 494
uk.sales@zetex.com	europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

