## 阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

## Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

TS120L Multifunction Telecom Switch

| Parameter | Rating | Units |
| :--- | :---: | :---: |
| Blocking Voltage | 350 | $\mathrm{~V}_{\mathrm{p}}$ |
| Load Current | 120 | mA |
| Max On-Resistance | 35 | $\Omega$ |

## Features

- Current Limited
- $3750 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- Low Drive Power Requirements (TTL/CMOS Compatible)
- High Reliability
- Arc-Free With No Snubbing Circuits
- No EMI/RFI Generation
- No Moving Parts
- Small 8-Pin Package
- Machine Insertable, Wave Solderable
- Surface Mount and Tape \& Reel Versions Available


## Applications

- Telecommunications
- Telecom Switching
- Tip/Ring Circuits
- Modem Switching (Laptop, Notebook, Pocket Size)
- Hook Switch
- Dial Pulsing
- Ground Start
- Ringing Injection
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls


## Description

The TS120L integrated circuit device combines a 350V, current-limited, normally open (1-Form-A) relay with a Darlington transistor optocoupler in a single package. The relay uses optically coupled MOSFET technology to provide $3750 \mathrm{~V}_{\text {rms }}$ of input to output isolation. The efficient MOSFET switches and photovoltaic die use Clare's patented OptoMOS® architecture, in which highly efficient GaAIAs infrared LEDs control the optically coupled output.

Telecom circuit designers, using the TS120L, can now take advantage of two discrete functions in a single component that uses less space than traditional discrete component solutions.

## Approvals

- UL Recognized Component: File E76270
- CSA Certified Component: Certificate 1175739
- EN/IEC 60950 Certified Component:

TUV Certificate: B 100549410006

## Ordering Information

| Part \# | Description |
| :--- | :--- |
| TS120L | 8-Pin DIP (50/Tube) |
| TS120PL | 8-Pin Flatpack (50/Tube) |
| TS120PLTR | 8-Pin Flatpack (1000/Reel) |
| TS120LS | 8-Pin Surface Mount (50/Tube) |
| TS120LSTR | 8-Pin Surface Mount (1000/Reel) |

## Pin Configuration



> Switching Characteristics of Normally Open Devices


Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

| Parameter | Ratings | Units |
| :--- | :---: | :---: |
| Relay Blocking Voltage | 350 | $\mathrm{~V}_{\mathrm{p}}$ |
| Input Power Dissipation ${ }^{1}$ | 150 | mW |
| Input Control Current, Relay | 50 | mA |
| Peak (10ms) | 1 | A |
| Input Control Current, Detector | 100 | mA |
| Total Power Dissipation ${ }^{2}$ | 800 | mW |
| Isolation Voltage, Input to Output | 3750 | $\mathrm{~V}_{\text {rms }}$ |
| Operational Temperature | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |

${ }^{1}$ Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
2 Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics @ $25^{\circ} \mathrm{C}$ : Relay Section

| Parameter | Conditions | Symbol | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Characteristics |  |  |  |  |  |  |
| Load Current |  |  |  |  |  |  |
| Continuous | - | $\mathrm{I}_{\mathrm{L}}$ | - | - | 120 | mA |
| Peak | $\mathrm{t}=10 \mathrm{~ms}$ | $\mathrm{I}_{\text {LPK }}$ | - | - | 350 | mA |
| Current Limit | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ | $\mathrm{I}_{\mathrm{CL}}$ | 130 | 170 | 210 | mA |
| On-Resistance | $\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$ | $\mathrm{R}_{\mathrm{ON}}$ | - | - | 35 | $\Omega$ |
| Off-State Leakage Current | $\mathrm{V}_{\mathrm{L}}=350 \mathrm{~V}$ | $\mathrm{I}_{\text {LEAK }}$ | - | - | 1 | $\mu \mathrm{A}$ |
| Switching Speeds Turn-On |  | $\mathrm{t}_{\text {on }}$ | - | - | 2.5 | ms |
| Turn-Off | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$ | $\mathrm{t}_{\text {off }}$ | - | - | 2.5 | ms |
| Output Capacitance | $\mathrm{V}_{\mathrm{L}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{C}_{\text {OUT }}$ | - | 25 | - | pF |
| Input Characteristics |  |  |  |  |  |  |
| Input Control Current to Activate | $\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$ | $I_{\text {F }}$ | - | - | 5 | mA |
| Input Control Current to Deactivate | - | $I_{\text {F }}$ | 0.4 | 0.7 | - | mA |
| Input Voltage Drop | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ | $V_{F}$ | 0.9 | 1.2 | 1.4 | V |
| Reverse Input Voltage | - | $\mathrm{V}_{\mathrm{R}}$ | - | - | 5 | V |
| Reverse Input Current | $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ | $I_{\text {R }}$ | - | - | 10 | $\mu \mathrm{A}$ |
| Common Characteristics |  |  |  |  |  |  |
| Input to Output Capacitance | - | $\mathrm{C}_{10}$ | - | 3 | - | pF |

## Electrical Characteristics @ $25^{\circ} \mathrm{C}$ : Detector Section

| Parameter | Conditions | Symbol | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Characteristics |  |  |  |  |  |  |
| Phototransistor Blocking Voltage | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$ | $\mathrm{BV}_{\text {CEO }}$ | 20 | 50 | - | V |
| Phototransistor Dark Current | $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$ | $\mathrm{I}_{\text {cEo }}$ | - | 100 | 1000 | nA |
| Saturation Voltage | $\mathrm{I}_{\mathrm{C}}=0.15 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0.05 \mathrm{~mA}$ | $V_{\text {SAT }}$ | - | 0.5 | 0.8 | V |
| Current Transfer Ratio | $\mathrm{I}_{\mathrm{F}}=0.05 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}$ | CTR | 300 | 1000 | - | \% |
| Input Characteristics |  |  |  |  |  |  |
| Input Control Current | $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}$ | $I_{\text {F }}$ | - | 1 | 2 | mA |
| Input Voltage Drop | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ | $V_{F}$ | 0.9 | 1.2 | 1.4 | V |
| Input to Output Capacitance | - | - | - | 3 | - | pF |
| Isolation, Input to Output | - | $\mathrm{V}_{10}$ | 3750 | - | - | $\mathrm{V}_{\text {rms }}$ |




PERFORMANCE DATA: RELAY



Typical Blocking Voltage Distribution
( $\mathrm{N}=50, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
 Blocking Voltage ( $\mathrm{V}_{\mathrm{p}}$ )





Typical Turn-Off Time vs. LED Forward Current


* The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.


## PERFORMANCE DATA: RELAY (cont.)



* The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

TS120L

PERFORMANCE DATA: DETECTOR




## Manufacturing Information

## Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. Clare classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

| Device | Moisture Sensitivity Level (MSL) Rating |
| :---: | :---: |
| TS120L /TS120PL / TS120LS | MSL 1 |

## ESD Sensitivity

ABA
This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

## Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed.

| Device | Maximum Temperature x Time |
| :---: | :---: |
| TS120L/TS120LS | $250^{\circ} \mathrm{C}$ for 30 seconds |
| TS120PL | $260^{\circ} \mathrm{C}$ for 30 seconds |

## Board Wash

Clare recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since Clare employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes.
Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.


TS120L

## Mechanical Dimensions

TS120L


TS120PL


PCB Land Pattern


Dimensions
mm (inches)

TS120LS


PCB Land Pattern

$\frac{\text { Dimensions }}{\mathrm{mm}}$ (inches)

## TS120LS Tape \& Reel



## Mechanical Dimensions



1. Dimensions carry tolerances of EIA Standard 481-2
2. Tape complies with all "Notes" for constant dimensions listed on page 5 of EIA-481-2

## TS120PL Tape \& Reel



## For additional information please visit our website at: www.clare.com

Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

