阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

Product Description

The R0605250L is a hybrid reverse amplifier. The part employs silicon die. It has extremely low distortion and superior return loss performance. The part also provides optimal reliability with low noise and is well suited for 5 MHz to 65 MHz CATV amplifiers for reverse channel systems.

Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- 25.4 dB Typ. Gain at 65 MHz
- 140 mA Max. at 24VDC

Applications

- 5 MHz to 65 MHz CATV Amplifier For Reverse Channel Systems

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall					$\mathrm{V}_{\mathrm{B}}=24 \mathrm{~V} ; \mathrm{T}_{\mathrm{MB}}=30^{\circ} \mathrm{C} ; \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$
Power Gain	24.5	25.3	25.5	dB	$\mathrm{f}=5 \mathrm{MHz}$
	24.3	25.4		dB	$\mathrm{f}=65 \mathrm{MHz}$
Slope ${ }^{[1]}$	-0.2	0.1	0.5	dB	$\mathrm{f}=5 \mathrm{MHz}$ to 65 MHz
Flatness of Frequency Response			± 0.2	dB	$\mathrm{f}=5 \mathrm{MHz}$ to 65 MHz
Input Return Loss	20.0			dB	$\mathrm{f}=5 \mathrm{MHz}$ to 65 MHz
Output Return Loss	20.0			dB	$\mathrm{f}=5 \mathrm{MHz}$ to 65 MHz
Noise Figure		2.3	3.0	dB	$\mathrm{f}=65 \mathrm{MHz}$
Total Current Consumption (DC)	125.0	130.0	140.0	mA	
Distortion data 5 MHz to 65 MHz					
CTB			-69	dBc	7 ch flat; $\mathrm{V}_{\mathrm{O}}=50 \mathrm{dBmV}^{[2]}$
XMOD			-59	dBc	7 ch flat; $\mathrm{V}_{\mathrm{O}}=50 \mathrm{dBmV}^{[2]}$
CSO			-70	dBc	7 ch flat; $\mathrm{V}_{0}=50 \mathrm{dBmV}^{[2]}$
d_{2}			-71	dBc	[3]
STB			-70	dB	[4]

1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.
2. 7 channels, NTSC frequency raster: $T 7-T 13(7.0 \mathrm{MHz}$ to 43.0 MHz$),+50 \mathrm{dBmV}$ flat output level.
3. $f_{1}=7 \mathrm{MHz} ; \mathrm{V}_{1}=50 \mathrm{dBmV} ; \mathrm{f}_{2}=25 \mathrm{MHz} ; \mathrm{V}_{2}=50 \mathrm{dBmV} ; \mathrm{f}_{\mathrm{TEST}}=\mathrm{f}_{1}+\mathrm{f}_{2}=32 \mathrm{MHz}$.
4. $\mathrm{f}_{1}=13 \mathrm{MHz} ; \mathrm{V}_{1}=50 \mathrm{dBmV} ; \mathrm{f}_{2}=25 \mathrm{MHz} ; \mathrm{V}_{2}=\mathrm{V}_{1} ; \mathrm{f}_{3}=7 \mathrm{MHz} ; \mathrm{V}_{3}=\mathrm{V}_{1} ; \mathrm{f}_{\mathrm{TEST}}=\mathrm{f}_{1}+\mathrm{f}_{2}-\mathrm{f}_{3}=31 \mathrm{MHz}$.

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA
Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA.
Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	65	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
Operating Mounting Base Tempera- ture	-30 to +100	${ }^{\circ} \mathrm{C}$

4 Caution ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum cause permanent damage to the device. Extended application of Absolute Maximum mance or functional operation of the device under Absolute. Maximum Rating conditions is not implied

RoHS status based on EUDirective 2002/95/EC (at time of this document revision)
The information in this publication is believed to be accurate and reliable. However, no responsibitity is assumed by RF Micro Devices, Inc. (RFMD) for is use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No icense is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

All Dimensions in mm:

	nominal	min	max
A	$44,6^{ \pm 0,2}$	44,4	44,8
B	$13,6^{ \pm 0,2}$	13,4	13,8
C	$20,4^{ \pm 0,5}$	19,9	20,9
D	$8^{ \pm 0,15}$	7,85	8,15
E	$12,6^{ \pm 0,15}$	12,45	12,75
F	$38,1^{ \pm 0,2}$	37,9	38,3
G	$4^{+0,21-0,05}$	3,95	4,2
H	$4^{ \pm 0,2}$	3,8	4,2
I	$25,4^{ \pm 0,2}$	25,2	25,6
J	UNC $6-32$	-	-
K	$4,2^{ \pm 0,2}$	4,0	4,4
L	$27,2^{ \pm 0,2}$	27,0	27,4
M	$11,6 \pm 0,5$	11,1	12,1
N	$5,8^{ \pm 0,4}$	5,4	6,2
O	$0,25^{ \pm 0,02}$	0,23	0,27
P	$0,45^{ \pm 0,03}$	0,42	0,48
Q	$2,54^{ \pm 0,3}$	2,24	2,84
R	$2,54^{ \pm 0,5}$	2,04	3,04
S	$2,54^{ \pm 0,25}$	2,29	2,79
T	$5,08^{ \pm 0,25}$	4,83	5,33
U	$5,08^{ \pm 0,25}$	4,83	5,33

