阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX245F,TC74LCX245FW,TC74LCX245FT,TC74LCX245FK

Low-Voltage Octal Bus Transceiver with 5-V Tolerant Inputs and Outputs

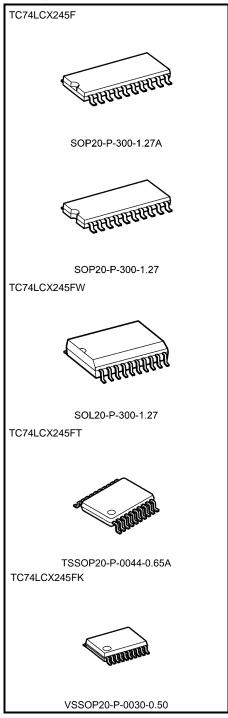
The TC74LCX245F/FW/FT/FK is a high-performance CMOS octal bus transceiver. Designed for use in 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (3.3 V) VCC applications, but it could be used to interface to 5-V supply environment for both inputs and outputs.

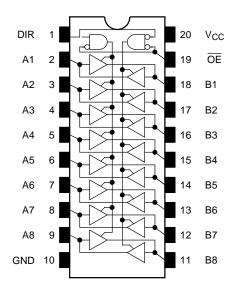
The direction of data transmission is determined by the level of the DIR input. The enable input ($\overline{\text{OE}}$) can be used to disable the device so that the busses are effectively isolated.

All inputs are equipped with protection circuits against static discharge.

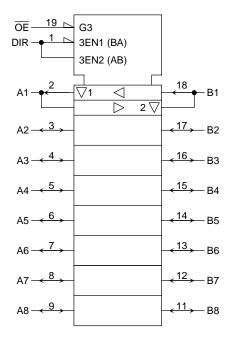
Features (Note)


- Low-voltage operation: VCC = 2.0 to 3.6 V
- High-speed operation: $t_{pd} = 7.0 \text{ ns (max) (VCC} = 3.0 \text{ to } 3.6 \text{ V)}$
- Ouput current: | IOH | /IOL = 24 mA (min) (VCC = 3.0 V)
- Latch-up performance: ±500 mA
- Available in JEDEC SOP, JEITA SOP and TSSOP
- Bidirectional interface between 5.0 V and 3.3 V signals
- · Power-down protection provided on all inputs and outputs
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 245 type

Note: Do not apply a signal to any bus pins when it is in the output mode. Damage may result.


All floating (high impedance) bus pins must have their input levels fixed by means of pull-up or pull-down resistors.

Weight


SOP20-P-300-1.27A : 0.22g (typ.) SOP20-P-300-1.27 : 0.22g (typ.) SOL20-P-300-1.27 : 0.46 g (typ.) TSSOP20-P-0044-0.65A : 0.08 g (typ.) VSSOP20-P-0030-0.50 : 0.03 g (typ.) Note: xxxFW (JEDEC SOP) is not available in Japan.

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

Inputs		Outputs	Function		
ŌE	DIR	Outputs	A-Bus	B-Bus	
L	L	A = B	Output	Input	
L	Н	B = A	Input	Output	
Н	Х	Z	Z	7	

X: Don't care

Z: High impedance

2

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	−0.5 to 7.0	V
DC input voltage (DIR, $\overline{\text{OE}}$)	V _{IN}	-0.5 to 7.0	V
		-0.5 to 7.0 (Note 2)	
DC bus I/O voltage	V _{I/O}	-0.5 to V _{CC} + 0.5	V
		(Note 3)	
Input diode current	I _{IK}	-50	mA
Output diode current	lok	±50 (Note 4)	mA
DC output current	Гоит	±50	mA
Power dissipation	P _D	180	mW
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: Output in OFF state

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	Vcc	2.0 to 3.6	V	
r ower supply voltage	VCC	1.5 to 3.6 (Note 2)		
Input voltage (DIR, $\overline{\text{OE}}$)	V _{IN}	0 to 5.5	V	
Bus I/O voltage	V _{I/O}	0 to 5.5 (Note 3)		
Bus #O voltage	V 1/O	0 to V _{CC} (Note 4)		
Output current	I _{OH} /I _{OL}	±24 (Note 5)	mΑ	
Output current	iOH/iOL	±12 (Note 6)	ША	
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 7)	ns/V	

Note 1: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

3

Note 2: Data retention only

Note 3: Output in OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.7 \text{ to } 3.0 \text{ V}$

Note 7: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C)

Characteristics		Symbol	Test Condition			Min	Max	Unit
		,						
Input voltage	H-level	V_{IH}		_	2.7 to 3.6	2.0	_	V
input voltage	L-level	V _{IL}		_	2.7 to 3.6		0.8	V
				$I_{OH} = -100 \mu A$	2.7 to 3.6	V _{CC} - 0.2	_	
	H-level	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -12 \text{ mA}$	2.7	2.2	_	
				$I_{OH} = -18 \text{ mA}$	3.0	2.4	_	
Output voltage				I _{OH} = -24 mA	3.0	2.2	_	V
			$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 100 μA	2.7 to 3.6	_	0.2	
	L-level			I _{OL} = 12 mA	2.7	_	0.4	
	L-ievei	L-level V _{OL}		I _{OL} = 16 mA	3.0	_	0.4	
				I _{OL} = 24 mA	3.0	_	0.55	
Input leakage currer	nt	I _{IN}	$V_{IN} = 0$ to 5.5 V		2.7 to 3.6	_	±5.0	μА
3-state output OFF state current		1	$V_{IN} = V_{IH}$ or V_{IL}		2.7 to 3.6	7.1- 0.0	15.0	Δ.
		loz	V _{OUT} = 0 to 5.5 V		2.7 10 3.6	_	±5.0	μΑ
Power-off leakage current		I _{OFF}	V _{IN} /V _{OUT} = 5.5 V		0	_	10.0	μА
Quiescent supply current			V _{IN} = V _{CC} or GND		2.7 to 3.6	_	10.0	
		Icc	V _{IN} /V _{OUT} = 3.6 to 5.5 V		2.7 to 3.6		±10.0	μΑ
Increase in I _{CC} per input		Δl _{CC}	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6		500	

AC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.7	_	8.0	ns
Propagation delay time	t _{pHL}	rigule 1, rigule 2	3.3 ± 0.3	1.5	7.0	
Output analys times	t _{pZL}	Figure 1, Figure 3	2.7	_	9.5	ns
Output enable time	t _{pZH}		3.3 ± 0.3	1.5	8.5	115
Output disable time	t disable time	Figure 1, Figure 3	2.7	_	8.5	ns
Output disable time	t _{pHZ}	i igure 1, i igure 3	3.3 ± 0.3	1.5	7.5	115
Output to output skew	t _{osLH}	(Note)	2.7	_	_	ns
Output to output skew	t _{osHL}	(Note)	3.3 ± 0.3	_	1.0	115

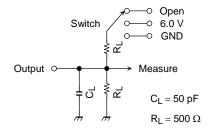
Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, \, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.5$ ns, $C_L = 50$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V

Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	DIR, OE	3.3	7	pF
Bus input capacitance	C _{I/O}	An, Bn	3.3	8	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (No	e) 3.3	25	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption.

Average operating current can be obtained by the equation:

 $I_{CC \text{ (opr)}} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per bit)}$

AC Test Circuit

Parameter	Switch
t _{pLH} , t _{pHL}	Open
t _{pLZ} , t _{pZL}	6.0 V
t _{pHZ} , t _{pZH}	GND

Figure 1

AC Waveform

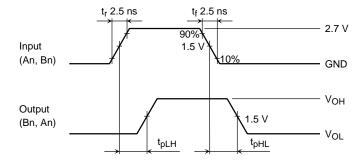
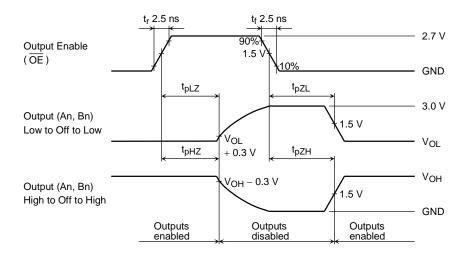
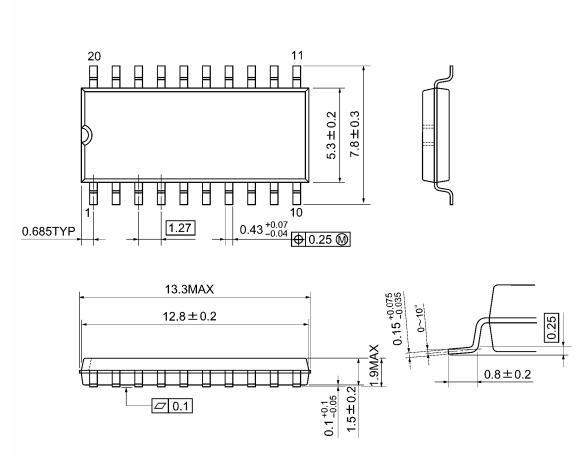
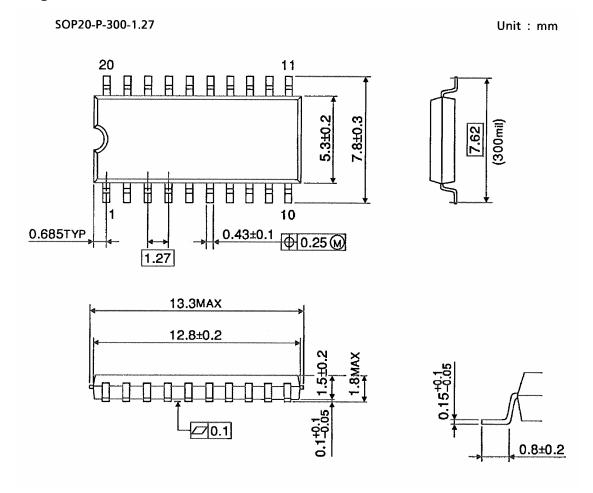



Figure 2 t_{pLH} , t_{pHL}

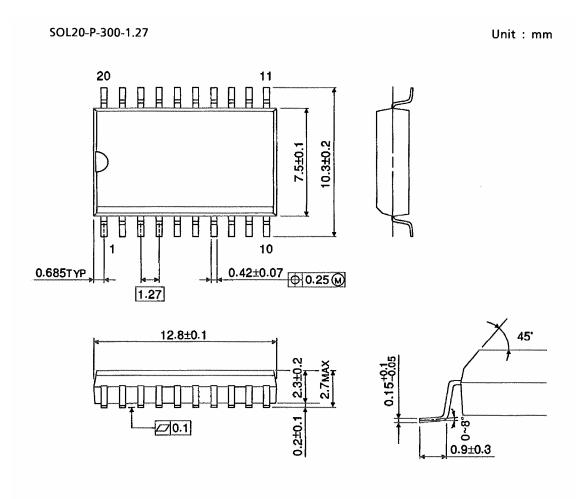


 $Figure \ 3 \quad t_{pLZ}, \, t_{pHZ}, \, t_{pZL}, \, t_{pZH}$

6 2006-06-01

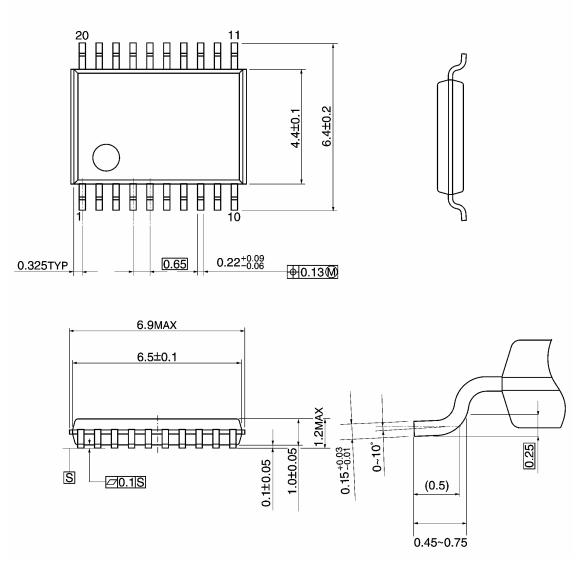

SOP20-P-300-1.27A Unit: mm

7


Weight: 0.22 g (typ.)

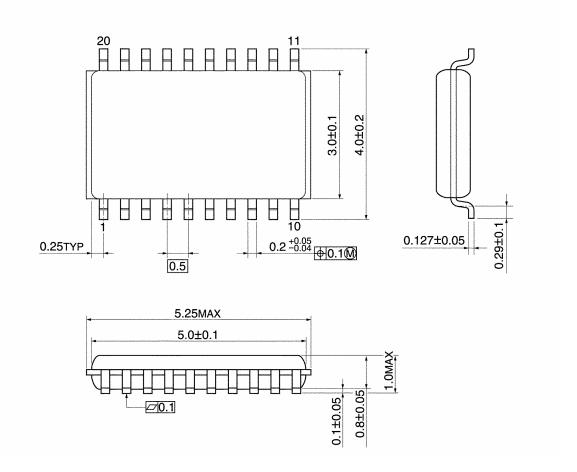
Weight: 0.22 g (typ.)

Package Dimensions (Note)


9

Note This package is not available in Japan.

Weight: 0.46 g (typ.)


TSSOP20-P-0044-0.65A Unit: mm

Weight: 0.08 g (typ.)

VSSOP20-P-0030-0.50 Unit: mm

Weight: 0.03 g (typ.)

Note: Lead (Pb)-Free Packages

SOP20-P-300-1.27A TSSOP20-P-0044-0.65A VSSOP20-P-0030-0.50

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others. 021023_c

12

• The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E