阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

October 1986

SEMICロNロபСTロRTM

DM74AS651 • DM74AS652

Octal Bus Transceiver and Register

General Description

These devices incorporate an octal transceiver and an octal D－type register configured to enable transmission of data from bus to bus or internal register to bus．The DM74AS651 offers 64－Industrial grade product guarantee－ ing performance from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．
These bus transceivers feature totem－pole 3－STATE out－ puts designed specifically for driving highly－capacitive or relatively low－impedance loads．The high－impedance state and increased high－logic－level drive provide these devices with the capability of being connected directly to and driv－ ing the bus lines in a bus－organized system without need for interface or pull－up components．They are particularly attractive for implementing buffer registers，I／O ports，bidi－ rectional bus drivers，and working registers．
The registers in the DM74AS651 and DM74AS652 are edge－triggered D－type flip－flops．On the positive transition of the clock（CAB or CBA），the input data is stored．
The SAB and SBA control pins are provided to select whether real－time data or stored data is transferred．A LOW input level selects real－time data and a HIGH level selects stored data．The select controls have a＂make before break＂configuration to eliminate a glitch which would nor－ mally occur in a typical multiplexer during the transition between stored and real－time data．
The Enable（GAB and GBA）control pins provide four modes of operation；real－time data transfer from bus A－to－ B，real－time data transfer from bus B－to－A，real－time bus A and／or B data transfer to internal storage，or internal stored data transfer to bus A and／or B ．

Features

－Switching specifications at 50 pF
－Switching specifications guaranteed over full tempera－ ture and V_{CC} range
■ Advanced oxide－isolated，ion－implanted Schottky TTL process
－3－STATE buffer－type outputs drive bus lines directly
■ Guaranteed performance over industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ in 64 －grade products

Ordering Code：

Order Number	Package Number	Package Description
DM74AS651WM	M24B	24－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－013，0．300＂Wide
DM74AS651NT	N24C	24－Lead Plastic Dual－In－Line Package（PDIP），JEDEC MS－001，0．300＂Wide
DM74AS652WM	M24B	24－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－013，0．300＂Wide
DM74AS652NT	N24C	24－Lead Plastic Dual－In－Line Package（PDIP），JEDEC MS－001，0．300＂Wide

Devices also available in Tape and Reel．Specify by appending the suffix letter＂X＂to the ordering code．
DM74AS651 • DM74AS652
Connection Diagram

Function Table

INPUTS					DATA I/O (Note 1)		OPERATION OR FUNCTION	
GAB	GBA	CAB CBA	SAB	SBA	$\begin{gathered} \text { A1 } \\ \text { THRU } \\ \text { A8 } \end{gathered}$	B1 THRU B8	DM74AS651	DM74AS652
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{\|cc\|} \hline \text { H or L } & \text { H or L } \\ \uparrow & \uparrow \end{array}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	Input	Input	Isolation Store A and B Data	Isolation Store A and B Data
L L	L L	$\begin{array}{cc} X & X \\ X & H \text { or } L \end{array}$	x x	L H	Output	Input	Real Time \bar{B} Data to A Bus Stored \bar{B} Data to A Bus	Real Time B Data to A Bus Stored B Data to A Bus
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H or L X	L H	X X	Input	Output	Real Time \bar{A} Data to B Bus Stored \bar{A} Data to B Bus	Real Time A Data to B Bus Stored A Data to B Bus
H	L	HorL HorL	H	H	Output	Output	Stored \bar{A} Data to B Bus \& Stored \bar{B} Data to A Bus	Stored A Data to B Bus \& Stored B Data to A Bus
X H	H H	$\uparrow \quad \mathrm{H} \text { or } \mathrm{L}$	X X (Note 2)	X x	Input Input	Unspecified (Note 1) Output	Store A, Hold B Store A in both registers	Store A, Hold B Store A in both registers
L	X L	$\begin{array}{cc} \hline \text { H or L } & \uparrow \\ \uparrow & \uparrow \end{array}$	x X	X X (Note 2)	Unspecified (Note 1) Output	Input Input	Hold A, Store B Store B in both registers	Hold A, Store B Store B in both registers
$\begin{aligned} & \mathrm{H}=\text { HIGH Level } \\ & \mathrm{L}=\text { LOW Level } \\ & \mathrm{X}=\text { Irrelevant } \\ & \uparrow=\text { LOW-to-HIGH Transition } \end{aligned}$ Note 1: The data output functions may be enabled or disabled by various signals at the GAB and $\bar{G} B A$ inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs. Note 2: If the select control is LOW, the clocks can occur simultaneously. If the select control is HIGH, the clocks must be staggered in order to load both registers.								

Absolute Maximum Ratings(Note 3)

Supply Voltage	7 V
Input Voltage	
Control Inputs	7 V
I/O Ports	5.5 V

Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Typical θ_{JA}
N Package
M Package
$41.1^{\circ} \mathrm{C} / \mathrm{W}$
$81.5^{\circ} \mathrm{C} / \mathrm{W}$

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be perated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings The "Recommended Operating Conditions" table will define the condition or actual device operation

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-15	mA
I_{OL}	LOW Level Output Current			48	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency	0		90	MHz
$\mathrm{t}_{\mathrm{WCLK}}$	Width of Enable Pulse	HIGH	5		
		LOW	6		ns
t_{SU}	Data Setup Time	6		ns	
t_{H}	Data Hold Time	0		ns	
$\mathrm{~T}_{\mathrm{A}}$	Operating Free Air Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Symbol	Parameter	Conditions			Min	Typ	Max	Units
V_{IK}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.2	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		$\mathrm{I}_{\mathrm{OH}}=$ Max	2			v
				$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	2.4	3.2		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			
V_{OL}	LOW Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$				0.35	0.5	V
I	Input Current at Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{1}=7 \mathrm{~V}$	Control Inputs			0.1	mA
			$\mathrm{V}_{1}=5.5 \mathrm{~V}$	A or B Ports			0.1	
$\overline{I_{\mathrm{IH}}}$	HIGH Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V} \end{aligned}$		Control Inputs			20	$\mu \mathrm{A}$
				A or B Ports			70	
ILL	LOW Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V} \end{aligned}$		Control Inputs			-0.5	mA
				A or B Ports			-0.75	
T	Output Drive Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.25 \mathrm{~V}$			-30		-112	mA
I_{cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	DM74AS651	Outputs HIGH		110	185	mA
				Outputs LOW		120	195	
				Outputs Disabled		130	195	
			DM74AS652	Outputs HIGH		120	195	
				Outputs LOW		130	211	
				Outputs Disabled		130	211	

DM74AS651 Switching Characteristics

Symbol	Parameter	Conditions	From	To	Min	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{R}_{1}=\mathrm{R}_{2}=500 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			90		MHz
$t_{\text {PLH }}$	Propagation Delay Time LOW－to－HIGH Level Output		CBA or CAB	A or B	2	8.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH－to－LOW Level Output				2	9	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW－to－HIGH Level Output		A or B	B or A	2	8	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH－to－LOW Level Output				1	7	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW－to－HIGH Level Output		SBA or SAB （Note 4）	A or B	2	11	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH－to－LOW Level Output				2	9	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to HIGH Level Output		Enable $\overline{\mathrm{G}} \mathrm{BA}$	A	2	10	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to LOW Level Output				3	16	ns
$\overline{t_{\text {PHZ }}}$	Output Disable Time from HIGH Level Output				2	9	ns
${ }_{\text {tPLZ }}$	Output Disable Time from LOW Level Output				2	9	ns
$\mathrm{t}_{\text {PZH }}$	Output Disable Time to HIGH Level Output		Enable GAB	B	3	11	ns
$\mathrm{t}_{\text {PZL }}$	Output Disable Time to LOW Level Output				3	16	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from HIGH Level Output				2	10	ns
${ }_{\text {t }}$	Output Disable Time from LOW Level Output				2	11	ns

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N24C
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
