

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

February 1990 Revised August 2000

100331 Low Power Triple D-Type Flip-Flop

General Description

FAIRCHILD

SEMICONDUCTOR

The 100331 contains three D-type, edge-triggered master/ slave flip-flops with true and complement outputs, a Common Clock (CP_C), and Master Set (MS) and Master Reset (MR) inputs. Each flip-flop has individual Clock (CP_n), Direct Set (SD_n) and Direct Clear (CD_n) inputs. Data enters a master when both CP_n and CP_C are LOW and transfers to a slave when CP_n or CP_C (or both) go HIGH. The Master Set, Master Reset and individual CD_n and SD_n inputs override the Clock inputs. All inputs have 50 k Ω pull-down resistors.

Features

- 35% power reduction of the 100131
- 2000V ESD protection
- Pin/function compatible with 100131
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:

Order Number	Package Number	Package Description
100331SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
100331PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100331QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100331QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Pin Descriptions

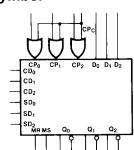
Pin Names

CP0-CP2

CD0-CD2

 CP_C

SDn


MR

MS

 $Q_0 - Q_2$

 $\overline{Q}_0 - \overline{Q}_2$

 $D_0 - D_2$

Individual Clock Inputs

Common Clock Input

Master Reset Input

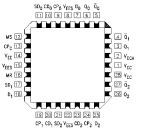
Master Set Input

Data Outputs

Individual Direct Clear Inputs

Complementary Data Outputs

Individual Direct Set Inputs


Data Inputs

Description

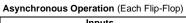
Connection Diagrams

24-Pin DIP/SOIC CD2 SD-23 CP-- CD 22 - CP D_2 Q2 · 21 •D1 ō2 20 - SD V_{CC} 1 - MR VCCA ٧_{EE} Q₁ CPC Q₁. MS 1 ō, - SDA 15 14 - CD_O Q₀ Dr 13 -CP/

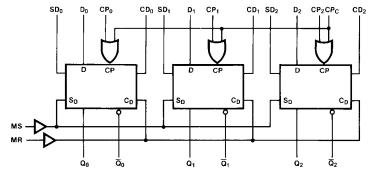
© 2000 Fairchild Semiconductor Corporation DS010262

100331

Truth Tables


Synchronous Operation (Each Flip-Flop)

		Inputs			Outputs
D _n	CPn	CP _C	MS SD _n	MR CD _n	Q _n (t + 1)
L	\ \	L	L	L	L
н	~	L	L	L	н
L	L	~	L	L	L
н	L	~	L	L	н
Х	L	L	L	L	Q _n (t)
Х	Н	Х	L	L	Q _n (t)
Х	Х	н	L	L	Q _n (t)


H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care U = Undefined

t = Time before CP Positive Transition t + 1 = Time after CP Positive Transition \checkmark = LOW-to-HIGH Transition

Logic Diagram

	Inputs									
D _n	CPn	CP _C	MS SD _n	MR CD _n	Q _n (t + 1)					
Х	Х	Х	Н	L	Н					
Х	Х	Х	L	н	L					
Х	х	Х	Н	н	U					

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG}) Maximum Junction Temperature (T ₁)	–65°C to +150°C +150°C
Pin Potential to Ground Pin (V _{EE})	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current	
(DC Output HIGH)	–50 mA
ESD (Note 2)	$\leq 2000 V$

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	-40°C to +85°C
Supply Voltage (V _{EE})	-5.7V to -4.2V

100331

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

$V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to +85°C

Symbol	Parameter	Min	Тур	Max	Units	Cor	ditions
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{IN} = V_{IH}$ (Max)	Loading with
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL} (Min)	50Ω to -2.0V
V _{онс}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH}$ (Min)	Loading with
V _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL} (Max)	50 Ω to –2.0V
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signa	l
						for All Inputs	
/ _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal	
						for All Inputs	
IL	Input LOW Current	0.5			μA	$V_{IN} = V_{IL}$ (Min)	
н	Input HIGH Current			240	μA	$V_{IN} = V_{IH}$ (Max)	
I _{EE}	Power Supply Current	-122		-65	mA	Inputs OPEN	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued) **DIP AC Electrical Characteristics** Vers = -4 2V to -5 7V Vers = Vers = GND

Symbol	Parameter	$T_C = 0^{\circ}C$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions	
Symbol	rarameter	Min	Мах	Min	Max	Min	Max	Units	Conditions	
f _{MAX}	Toggle Frequency	375		375	375	375		MHz	Figures 2, 3	
t _{PLH} t _{PHL}	Propagation Delay CP _C to Output	0.75	2.00	0.75	2.00	0.75	2.00	ns	Figures 1.2	
t _{PLH} t _{PHL}	Propagation Delay CP _n to Output	0.75	2.00	0.75	2.00	0.75	2.00	ns	Figures 1, 3	
t _{PLH} t _{PHL}	Propagation Delay CD _n , SD _n to Output	0.70	1.70	0.70	1.70	0.70	1.80	ns	$CP_n, CP_C = L$	
t _{PLH} t _{PHL}		0.70	2.00	0.70	2.00	0.70	2.00	113	$CP_n, CP_C = H$	Figures 1, 4
t _{PLH} t _{PHL}	Propagation Delay MS, MR to Output	1.10	2.60	1.10	2.60	1.10	2.60	ns	$CP_n, CP_C = L$	
t _{PLH} t _{PHL}		1.10	2.80	1.10	2.80	1.10	2.80	110	$CP_n, CP_C = H$	
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.35	1.30	0.35	1.30	0.35	1.30	ns	Figures 1, 3, 4	
t _S	Setup Time D _n	0.40		0.40		0.40		ns	Figure 5	
	CD _n , SD _n (Release Time) MS, MR (Release Time)	1.30 2.30		1.30 2.30		1.30 2.30		110	Figure 4	
t _H	Hold Time D _n	0.5		0.5		0.7		ns	Figure 5	
t _{PW} (H)	Pulse Width HIGH CP _n , CP _C , CD _n , SD _n , MR, MS	2.00		2.00		2.00		ns	Figures 3, 4	

SOIC and PLCC AC Electrical Characteristics

Symbol	Parameter	T _C =	0°C	T _C = -	+ 25°C	T _C = -	+85°C	Units	Conditions	
Symbol	Falanetei	Min	Max	Min	Max	Min	Max	Units	Conc	ittons
MAX	Toggle Frequency	400		400		400		MHz	Figures 2, 3	
t _{PLH} t _{PHL}	Propagation Delay CP _C to Output	0.75	1.80	0.75	1.80	0.75	1.80	ns	Figures 1, 3	
PLH	Propagation Delay CP _n to Output	0.75	1.80	0.75	1.80	0.75	1.80	ns	riguies 1, 3	
PLH PHL	Propagation Delay CD _n , SD _n to Output	0.70	1.50	0.70	1.50	0.70	1.60	ns	CP _n , CP _C =L	
t _{PLH} t _{PHL}		0.80	1.80	0.70	1.80	0.70	1.80	115	CP _n , CP _C = H	Figures 1, 4
^і РІН ^і РНІ	Propagation Delay MS, MR to Output	1.10	2.40	1.10	2.40	1.10	2.40	ns	CP _n , CP _C = L	riguies 1, 4
PLH PHL		1.10	2.60	1.10	2.60	1.10	2.60		CP _n , CP _C = H	
тін тні	Transition Time 20% to 80%, 80% to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1, 3, 4	
s	Setup Time D _n	0.30		0.30		0.30			Figure 5	
	CD _n , SD _n (Release Time) MS, MR (Release Time)	1.20 2.20		1.20 2.20		1.20 2.20		ns	Figure 4	
н	Hold Time D _n	0.5		0.5		0.7		ns	Figure 5	
t _{PW} (H)	Pulse Width HIGH CP _n , CP _C , CD _n , SD _n , MR, MS	2.00		2.00		2.00		ns	Figures 3, 4	

www.fairchildsemi.com

4

Commercial Version (Continued)

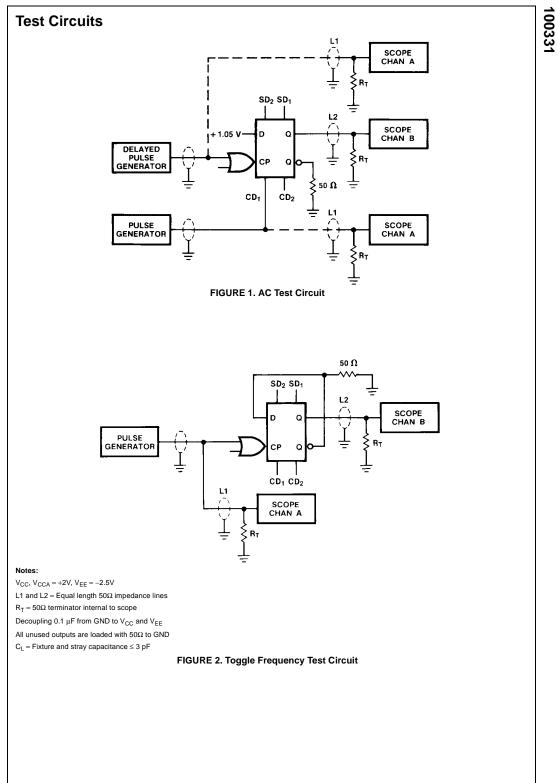
Symbol	Devementer	T _C =	= 0°C	T _C = -	+25°C	T _C = -	+85°C	Units	Conditions		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units	Conditions		
t _{PLH}	Propagation Delay	0.75	1.40	0.75	1.40	0.00	1.50				
t _{PHL}	CP _C to Output	0.75	1.40	0.75	1.40	0.80	1.50	ns	Figures 1, 2 DLC	C Ombr	
t _{PLH}	Propagation Delay	0.70	1.40	0.75	1.40	0.90	1.50		Figures 1, 3 PLC	C Only	
t _{PHL}	CP _n to Output	0.70	1.40	0.75	1.40	0.80	1.50	ns			
t _{PLH}	Propagation Delay	0.70	1.50	0.70	1.50	0.80	1.60		CP _n , CP _C =L		
t _{PHL}	CD _n , SD _n to Output	0.70	1.50	0.70	1.50	0.80	1.00	ns	PLCC Only		
t _{PLH}		0.80	1.70	0.80	1.70	0.80	1.80	115	$CP_n, CP_C = H$		
t _{PHL}		0.80	1.70	0.80	1.70	0.80	1.00		PLCC Only	Figures 1,	
t _{PLH}	Propagation Delay	1.10	2.00	1.10	2.00	1.20	2.10		$CP_n, CP_C = L$	Figures 1, 4	
t _{PHL}	MS, MR to Output	1.10	2.00	1.10	2.00	1.20	2.10	ns	PLCC Only		
t _{PLH}		1.20	2.10	1.20	2.10	1.30	2.20	115	$CP_n, CP_C = H$		
t _{PHL}		1.20	2.10	1.20	2.10	1.30	2.20		PLCC Only		
t _{OSHL}	Maximum Skew Common Edge								PLCC Only		
	Output-to-Output Variation		100		100		100	ps	(Note 4)		
	Common Clock to Output Path										
t _{OSHL}	Maximum Skew Common Edge								PLCC Only		
	Output-to-Output Variation		235		235		235	ps	(Note 4)		
	CP _n to Output Path										
t _{OSLH}	Maximum Skew Common Edge								PLCC Only		
	Output-to-Output Variation		120		120		120	ps	(Note 4)		
	Common Clock to Output Path										
t _{OSLH}	Maximum Skew Common Edge								PLCC Only		
	Output-to-Output Variation		275		275		275	ps	(Note 4)		
	CP _n to Output Path										
t _{OST}	Maximum Skew Opposite Edge							ps	PLCC Only		
	Output-to-Output Variation		125		125		125		(Note 4)		
	Common Clock to Output Path										
t _{OST}	Maximum Skew Opposite Edge							ps	PLCC Only		
-	Output-to-Output Variation		265		265		265		(Note 4)		
	CP _n to Output Path										
t _{PS}	Maximum Skew								PLCC Only		
-	Pin (Signal) Transition Variation		90		90		90	ps	(Note 4)		
	Common Clock to Output Path										
t _{PS}	Maximum Skew							<u> </u>	PLCC Only		
	Pin (Signal) Transition Variation		90		90		90	ps	(Note 4)		
	CP _n to Output Path	1		1				I .	·		

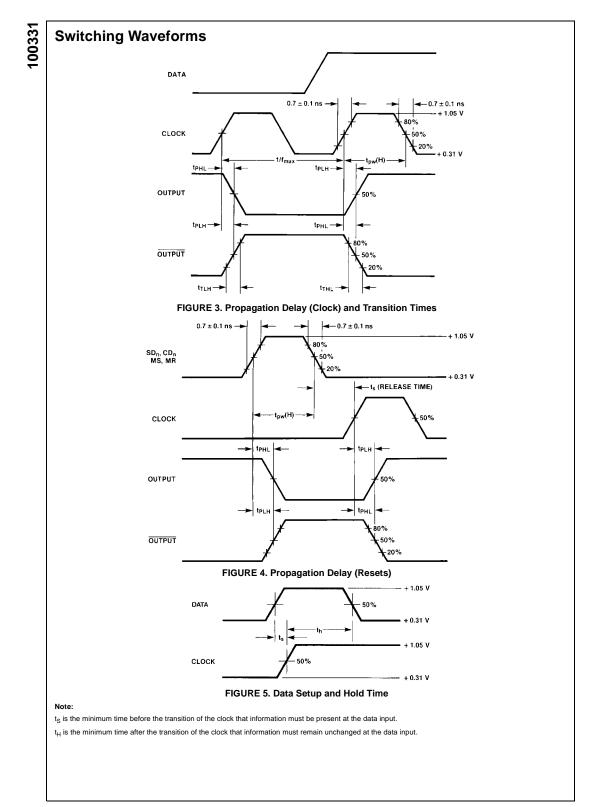
Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

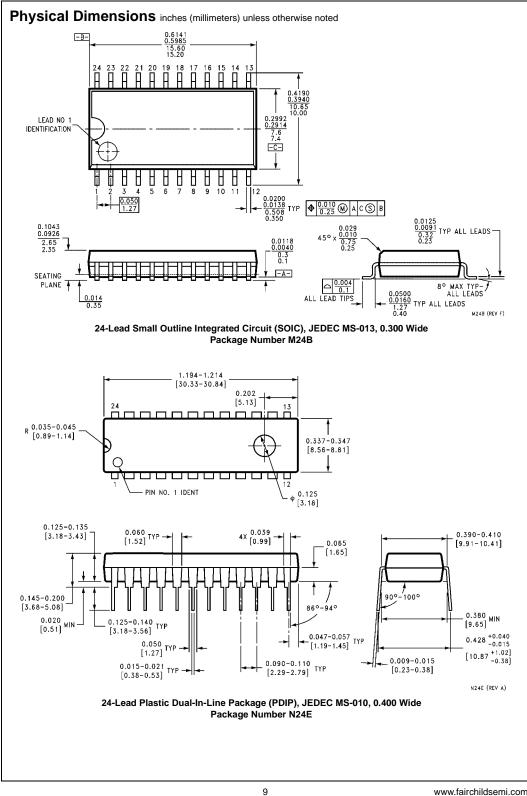
100331

100331

Industrial Version

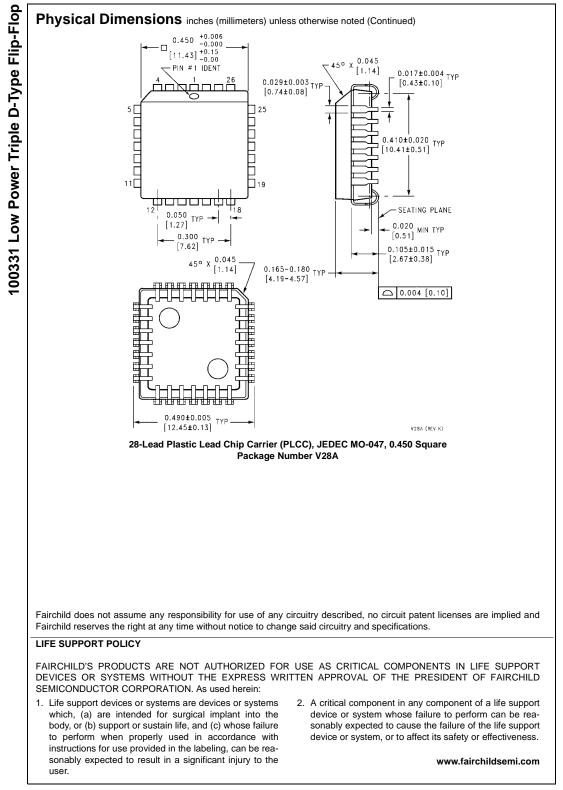

PLCC DC Electrical Characteristics (Note 5) $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_C = -40^{\circ}C$ to $+85^{\circ}C$


Symbol	Parameter	T _C = -	–40°C	$T_C = 0^{\circ}C$	to +85°C	Units	Conditions		
Symbol	Falanielei	Min	Max	Min	Max	Units	Conditions	>	
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} = V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or V _{IL} (Min)	50Ω to $-2.0V$	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH} (Min)	Loading with	
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL} (Max)	50Ω to $-2.0V$	
VIH	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal	•	
							for All Inputs		
VIL	Input LOW Voltage	-1830	-1480	-1830	1475	mV	Guaranteed LOW Signal		
							for All Inputs		
I _{IL}	Input LOW Current	0.5		0.5		μΑ	$V_{IN} = V_{IL}$ (Min)		
IIH	Input HIGH Current		300		240	μΑ	V _{IN} = V _{IH} (Max)		
I _{EE}	Power Supply Current	-122	-60	-122	-65	mA	Inputs Open		


Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

Symbol	Parameter	T _C = -	–40°C	T _C = -	+25°C	T _C = -	+85°C	Units	Conditions			
Symbol	i arameter	Min	Max	Min	Max	Min	Max	Units	Conditions			
f _{MAX}	Toggle Frequency	375		400		400		MHz	Figures 2, 3			
t _{PLH} t _{PHL}	Propagation Delay CP _C to Output	0.75	1.80	0.75	1.80	0.75	1.80	ns	Figures 1, 3			
t _{PLH} t _{PHL}	Propagation Delay CP _n to Output	0.70	1.80	0.75	1.80	0.75	1.80	ns	-			
t _{PLH} t _{PHL}	Propagation Delay CD _n , SD _n to Output	0.60	1.50	0.70	1.50	0.70	1.60	ns	CP _n , CP _C = L			
t _{PLH} t _{PHL}		0.70	1.80	0.70	1.80	0.70	1.80	113	$CP_n, CP_C = H$	Figures 1, 4		
t _{PLH} t _{PHL}	Propagation Delay MS, MR to Output	1.10	2.40	1.10	2.40	1.10	2.40	ns	CP _n , CP _C = L	riguies 1, 4		
t _{PLH} t _{PHL}		1.10	2.60	1.10	2.60	1.10	2.60	113	CP _n , CP _C = H			
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.20	1.40	0.35	1.10	0.35	1.10	ns	Figures 1, 3, 4			
t _S	Setup Time D _n	1.00		0.30		0.30			Figure 5			
	CD _n , SD _n (Release Time) MS, MR (Release Time)	1.50 2.50		1.20 2.20		1.20 2.20		ns	Figure 4			
t _H	Hold Time D _n	0.7		0.5		0.7		ns	Figure 5			
t _{PW} (H)	Pulse Width HIGH CP _n , CP _C , CD _n , SD _n , MR, MS	2.00		2.00		2.00		ns	Figures 3, 4			



www.fairchildsemi.com

100331

