阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

July 1988 Revised August 2000

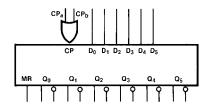
100351

Low Power Hex D-Type Flip-Flop

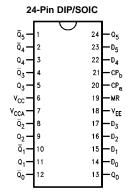
General Description

The 100351 contains six D-type edge-triggered, master/slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP $_a$ and CP $_b$) and common Master Reset (MR) input. Data enters a master when both CP $_a$ and CP $_b$ are LOW and transfers to the slave when CP $_a$ and CP $_b$ (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have 50 k Ω pull-down resistors.

Features


- 40% power reduction of the 100151
- 2000V ESD protection
- Pin/function compatible with 100151
- Voltage compensated operating range: -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:


Order Number	Package Number	Package Description
100351SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
100351PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100351QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100351QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (-40°C to +85°C)

Devises also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagrams

Pin Descriptions

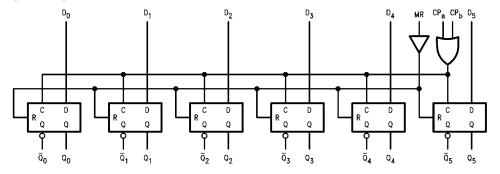
Pin Names	Description
D ₀ –D ₅	Data Inputs
D ₀ –D ₅ CP _a , CP _b	Common Clock Inputs
MR	Asynchronous Master Reset Input
Q ₀ -Q ₅	Data Outputs
$\overline{Q}_0 - \overline{Q}_5$	Complementary Data Outputs

28-Pin PLCC

Truth Tables

(Each Flip-flop)

Synchronous Operation


	Inp		Outputs	
D _n	CPa	CP _b	MR	Q _n (t+1)
L		L	L	L
Н	~	L	L	Н
L	L	~	L	L
Н	L	~	L	Н
Х	Н	~	L	Q _n (t)
X	~	Н	L	Q _n (t)
Х	L	L	L	Q _n (t)

Asynchronous Operation

	Inputs							
D _n	CPa	CP _b	MR	Q _n (t+1)				
Х	Х	X	Н	L				

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Don't Care
- $t = \mbox{Time before CP positive transition}$
- t+1 = Time after CP positive transition
- ∠ = LOW-to-HIGH transition

Logic Diagram

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

Case Temperature (T_C)

 $\begin{array}{lll} \mbox{Commercial} & 0 \mbox{°C to } +85 \mbox{°C} \\ \mbox{Industrial} & -40 \mbox{°C to } +85 \mbox{°C} \\ \mbox{Supply Voltage (V_{EE})} & -5.7 \mbox{V to } -4.2 \mbox{V} \end{array}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2 V$ to -5.7 V, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0 ^{\circ} C$ to $+85 ^{\circ} C$

Symbol	Parameter	Min	Тур	Max	Units	Conditions			
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} =V _{IH} (Max)	Loading with		
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	IIIV	or V _{IL} (Min)	50Ω to -2.0V		
V _{OHC}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH}$ (Min)	Loading with		
V _{OLC}	Output LOW Voltage			-1610	IIIV	or V _{IL} (Max)	50Ω to -2.0V		
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs			
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs			
I _{IL}	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL} (Min)$			
I _{IH}	Input HIGH Current								
	MR			350					
	D ₀ –D ₅			240	μΑ	$V_{IN} = V_{IH} (Max)$			
	CP _a , CP _b			350					
I _{EE}	Power Supply Current	-129		-62	mA	Inputs OPEN			

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

 $\rm V_{EE} = -4.2V$ to $-5.7V,~V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	$T_C = 0^{\circ}C$		T _C = +25°C		$T_C = +85^{\circ}C$		Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.80	2.00	0.80	2.0	0.90	2.10	ns	Figures 1, 3
t _{PHL}	CP _a , CP _b to Output	0.60	2.00	0.60	2.0	0.90	2.10	115	rigules 1, 3
t _{PLH}	Propagation Delay	1.10	2.30	1.10	2.30	1.20	2.40	ns	Figures 1 4
t _{PHL}	MR to Output	1.10	∠.30	1.10	2.30	1.20	2.40	115	Figures 1, 4
t _{TLH}	Transition Time	0.35	1.20	0.35	1,20	0.35	1,20	ns	Figures 1, 3
t _{THL}	20% to 80%, 80% to 20%	0.33	1.20	0.33	1.20	0.33	1.20	115	rigules 1, 3
t _S	Setup Time								
	D ₀ -D ₅	0.40		0.40		0.40		ns	Figure 5
	MR (Release Time)	1.60		1.60		1.60			Figure 4
t _H	Hold Time	0.80		0.80		0.80		ns	Figure 5
	D ₀ -D ₅	0.80		0.60		0.60		115	rigule 5
t _{PW} (H)	Pulse Width HIGH	2.00		2.00		2.00			Figure 2 4
	CP _a , CP _b , MR	2.00		2.00		2.00		ns	Figures 3, 4

Commercial Version (Continued) SOIC and PLCC AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	$T_C = 0^{\circ}C$		T _C = +25°C		T _C = +85°C		Units	Conditions
Symbol		Min	Max	Min	Max	Min	Max	Oilles	Conditions
f _{MAX}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.80	1.80	0.80	1.80	0.90	1.90	ns	Figures 1, 3
t _{PHL}	CP _a , CP _b to Output	0.60	1.00	0.60	1.00	0.90	1.90	115	rigules 1, 3
t _{PLH}	Propagation Delay	1.10	2.10	1.10	2.10	1.20	2.20	ns	Figures 1, 4
t _{PHL}	MR to Output	1.10	2.10	1.10	2.10	1.20	2.20	115	rigules 1, 4
t _{TLH}	Transition Time	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1, 3
t _{THL}	20% to 80%, 80% to 20%	0.43	1.70	0.43	1.00	0.43	1.70	113	riguies 1, 5
t _S	Setup Time								
	D ₀ –D ₅	0.30		0.30		0.30		ns	Figure 5
	MR (Release Time)	1.50		1.50		1.50			Figure 4
t _H	Hold Time	0.80		0.80		0.80		ns	Figure 5
	D ₀ -D ₅	0.00		0.00		0.00		115	r igure 5
t _{PW} (H)	Pulse Width HIGH	2.00		2.00		2.00		ns	Figures 3, 4
	CP _a , CP _b , MR	2.00		2.00		2.00		115	rigules 3, 4
t _{OSHL}	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		220		220		220	ps	(Note 4)
	Clock to Output Path								
t _{OSLH}	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		210		210		210	ps	(Note 4)
	Clock to Output Path								
t _{ost}	Maximum Skew Opposite Edge								PLCC only
	Output-to-Output Variation		240		240		240	ps	(Note 4)
	Clock to Output Path								
t _{PS}	Maximum Skew								PLCC only
	Pin (Signal) Transition Variation		230		230		230	ps	(Note 4)
	Clock to Output Path								

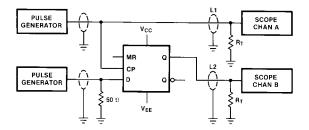
Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

Industrial Version

PLCC DC Electrical Characteristics

 V_{EE} =-4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = 0°C to +85°C (Note 5)

Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = 0^\circ \text{ to } +85^\circ C$		Units	Conditions		
	T drameter	Min	Max	Min	Max	011110	Conditions		
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} =V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mv	or V _{IL} (Min)	50Ω to -2.0V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH} (Min)	Loading with	
V _{OLC}	Output LOW Voltage		-1565		-1610	IIIV	or V _{IL} (Max)	50Ω to $-2.0V$	
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs		
V _{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal		
							for All Inputs		
I _{IL}	Input LOW Current	0.50		0.50		μΑ	$V_{IN} = V_{IL}$ (Min)		
I _{IH}	Input HIGH Current								
	MR		350		350				
	D ₀ -D ₅		240		240	μΑ	$V_{IN} = V_{IH}$ (Max)		
	CP _a , CP _b		350		350				
I _{EE}	Power Supply Current	-129	-62	-129	-62	mA	Inputs OPEN		


Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

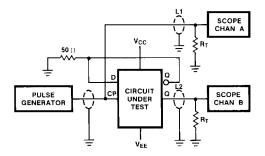
Symbol	Parameter	T _C =	–40°C	T _C =	$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Conditions
Syllibol		Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.80	1.80	0.80	1.80	0.90	1.90	ns	Figures 1, 3
t _{PHL}	CP _a , CP _b to Output	0.80	1.00	0.60	1.00	0.90	1.90	115	rigules 1, 3
t _{PLH}	Propagation Delay	1.10	2.10	1.10	2.10	1.20	2.20	ns	Figures 1, 4
t _{PHL}	MR to Output	1.10	2.10	1.10	2.10	1.20	2.20	115	rigules 1, 4
t _{TLH}	Transition Time	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1, 3
t _{THL}	20% to 80%, 80% to 20%	0.43	J.45 1.70	0.45	1.00	0.43	1.70	115	rigules 1, 3
t _S	Setup Time								
	D ₀ -D ₅	0.60		0.30		0.30		ns	Figure 5
	MR (Release Time)	2.20		1.50		1.50			Figure 4
t _H	Hold Time	0.60		0.90		0.00			Figure 5
	D ₀ -D ₅	0.60		0.90		0.90		ns	Figure 5
t _{PW} (H)	Pulse Width HIGH	2.00		2.00		2.00		ns	Figures 2 4
	CP _a , CP _b , MR	2.00		2.00		2.00			Figures 3, 4

Test Circuitry

Notes:

 $\mathrm{V_{CC},\,V_{CCA}=+2V,\,V_{EE}=-2.5V}$

L1 and L2 = equal length 50Ω impedance lines


 $R_{T}=50\Omega$ terminator internal to scope

Decoupling 0.1 μF from GND to V_{CC} and V_{EE}

All unused outputs are loaded with 50Ω to GND

 C_L = Fixture and stray capacitance \leq 3 pF

FIGURE 1. AC Test Circuit

Notes:

 $V_{CC},\,V_{CCA}=+2V,\,V_{EE}=-2.5V$

L1 and L2 = equal length 50Ω impedance lines

 $R_T = 50\Omega$ terminator internal to scope

Decoupling 0.1 μF from GND to V_{CC} and V_{EE}

All unused outputs are loaded with 50Ω to GND

 $C_L = \text{Jig}$ and stray capacitance $\leq 3 \text{ pF}$

FIGURE 2. Toggle Frequency Test Circuit

Switching Waveforms

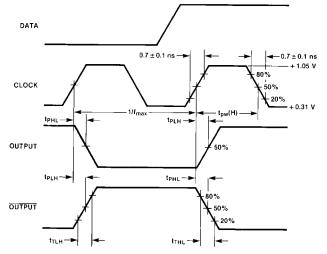


FIGURE 3. Propagation Delay (Clock) and Transition Times

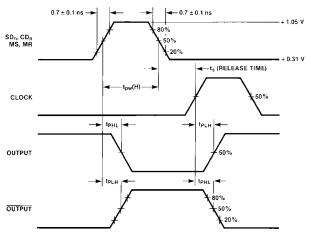
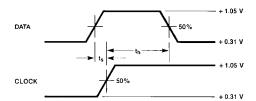
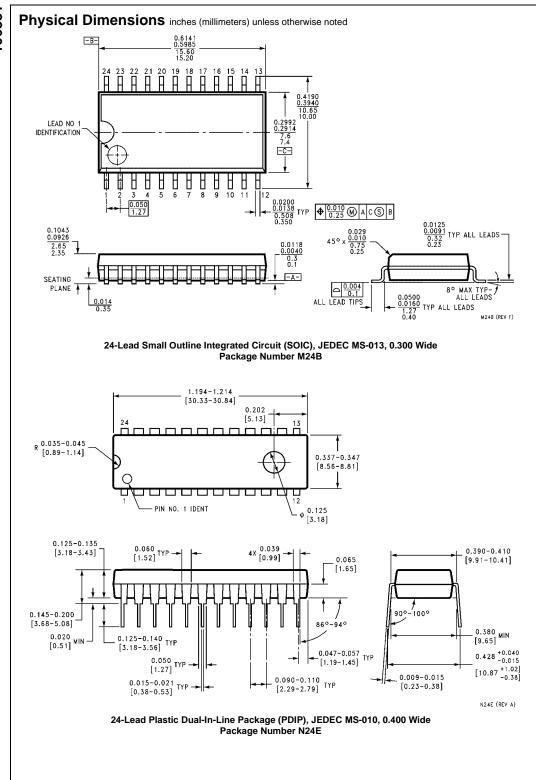
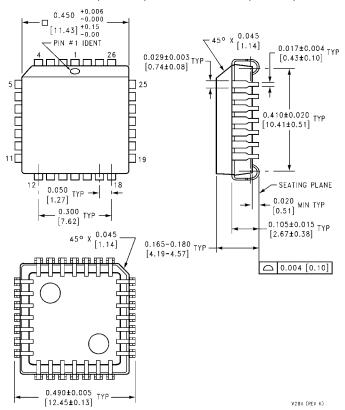



FIGURE 4. Propagation Delay (Reset)



Notes:


t_S is the minimum time before the transition of the clock that information must be present at the data input.

 $t_{\mbox{\scriptsize H}}$ is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 5. Setup and Hold Time

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com