阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

Absolute Maximum Ratings(Note 1)

Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
Maximum Junction Temperature (T_{J})
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
V_{EE} to +0.5 V
$-50 \mathrm{~mA}$
$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})
Commercial $\quad 0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Voltage (V_{EE})
-5.7 V to -4.2 V
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units		
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}(\mathrm{Min})$	Loading with
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610		or $\mathrm{V}_{\text {IL }}$ (Max)	50Ω to -2.0 V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min)	
I_{IH}				$\begin{aligned} & 350 \\ & 240 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	-129		-62	mA	Inputs OPEN	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$f_{\text {MAX }}$	Toggle Frequency	375		375		375		MHz	Figures 2, 3
$\begin{array}{\|l} \hline \begin{array}{l} \text { tPLH } \end{array} \\ \mathrm{t}_{\mathrm{PH}} \end{array}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	2.00	0.80	2.0	0.90	2.10	ns	Figures 1, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PPLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation Delay MR to Output	1.10	2.30	1.10	2.30	1.20	2.40	ns	Figures 1, 4
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{TLH}} \\ \mathrm{t}_{\mathrm{TH}} \end{array}$	$\begin{array}{\|l\|} \hline \text { Transition Time } \\ 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{array}$	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1, 3
t_{s}	Setup Time $\mathrm{D}_{0}-\mathrm{D}_{5}$ MR (Release Time)	$\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$		ns	$\begin{array}{\|l\|} \hline \text { Figure } 5 \\ \hline \text { Figure } 4 \end{array}$
th	Hold Time $D_{0}-D_{5}$	0.80		0.80		0.80		ns	Figure 5
$\overline{\mathrm{t}_{\text {PW }}(\mathrm{H})}$	$\begin{aligned} & \hline \text { Pulse Width HIGH } \\ & \mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR} \end{aligned}$	2.00		2.00		2.00		ns	Figures 3, 4

Commercial Version (Continued)

 SOIC and PLCC AC Electrical Characteristics| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=\mathbf{0}^{\circ} \mathrm{C}$ | | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ | | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ | | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min | Max | Min | Max | Min | Max | | |
| ${ }_{\text {f MAX }}$ | Toggle Frequency | 375 | | 375 | | 375 | | MHz | Figures 2, 3 |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output | 0.80 | 1.80 | 0.80 | 1.80 | 0.90 | 1.90 | ns | Figures 1, 3 |
| tPLH
 $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay MR to Output | 1.10 | 2.10 | 1.10 | 2.10 | 1.20 | 2.20 | ns | Figures 1, 4 |
| $\begin{aligned} & \overline{\mathrm{t}_{\mathrm{TLH}}} \\ & \mathrm{t}_{\mathrm{T} H L} \end{aligned}$ | Transition Time 20% to $80 \%, 80 \%$ to 20% | 0.45 | 1.70 | 0.45 | 1.60 | 0.45 | 1.70 | ns | Figures 1, 3 |
| t_{s} | Setup Time $D_{0}-D_{5}$
 MR (Release Time) | $\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$ | | $\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$ | | $\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$ | | ns | Figure 5
 Figure 4 |
| t_{H} | $\begin{aligned} & \hline \text { Hold Time } \\ & D_{0}-D_{5} \\ & \hline \end{aligned}$ | 0.80 | | 0.80 | | 0.80 | | ns | Figure 5 |
| $\overline{t_{\text {PW }}(\mathrm{H})}$ | Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR}$ | 2.00 | | 2.00 | | 2.00 | | ns | Figures 3, 4 |
| $\mathrm{t}_{\text {OSHL }}$ | Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path | | 220 | | 220 | | 220 | ps | PLCC only (Note 4) |
| ${ }_{\text {tosLH }}$ | Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path | | 210 | | 210 | | 210 | ps | PLCC only (Note 4) |
| $\mathrm{t}_{\text {OST }}$ | Maximum Skew Opposite Edge
 Output-to-Output Variation
 Clock to Output Path | | 240 | | 240 | | 240 | ps | PLCC only (Note 4) |
| $\overline{t_{P S}}$ | Maximum Skew
 Pin (Signal) Transition Variation
 Clock to Output Path | | 230 | | 230 | | 230 | ps | PLCC only
 (Note 4) |

Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (toshl), or LOW-to-HIGH (tosLh), or in opposite directions both HL and LH ($\mathrm{t}_{\mathrm{OST}}$). Parameters $\mathrm{t}_{\mathrm{OST}}$ and t_{PS} guaranteed by design.

Industrial Version									
PLCC DC Electrical Characteristics									
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 5)									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions		
		Min	Max	Min	Max				
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V	
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V	
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610				
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs		
$\overline{\mathrm{V} \text { IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs		
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}$ (Min)		
IIH	Input HIGH Current					$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$		
	MR		350		350				
	$D_{0}-D_{5}$		240		240				
	$\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$		350		350				
$\overline{\mathrm{I}_{\mathrm{EE}}}$	Power Supply Current	-129	-62	-129	-62	mA	Inputs OPEN		

noise immunity sen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }_{\text {f MAX }}$	Toggle Frequency	375		375		375		MHz	Figures 2, 3
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.80	1.80	0.80	1.80	0.90	1.90	ns	Figures 1, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay MR to Output	1.10	2.10	1.10	2.10	1.20	2.20	ns	Figures 1, 4
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1, 3
t_{s}	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$		ns	Figure 5 Figure 4
t_{H}	$\begin{aligned} & \hline \text { Hold Time } \\ & D_{0}-D_{5} \end{aligned}$	0.60		0.90		0.90		ns	Figure 5
$\mathrm{tpw}^{(H)}$	$\begin{aligned} & \text { Pulse Width HIGH } \\ & \mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR} \end{aligned}$	2.00		2.00		2.00		ns	Figures 3, 4

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Jig and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 2. Toggle Frequency Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
