

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

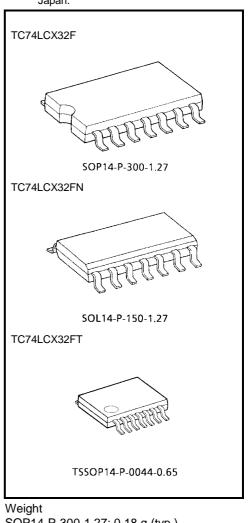
3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX32F,TC74LCX32FN,TC74LCX32FT

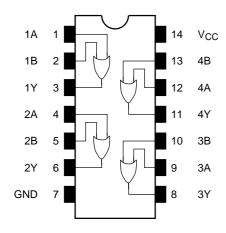
Low-Voltage Quad 2-Input OR Gate with 5-V Tolerant Inputs and Outputs

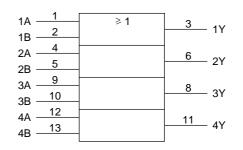

The TC74LCX32F/FN/FT is a high-performance CMOS 2-input OR gate. Designed for use in 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low-power dissipation.

The device is designed for low-voltage (3.3 V) VCC applications, but it could be used to interface to 5-V supply environment for inputs.

All inputs are equipped with protection circuits against static discharge.

Features


- Low-voltage operation: V_{CC} = 2.0 to 3.6 V
- High-speed operation: $t_{pd} = 5.5 \text{ ns} (max) (V_{CC} = 3.0 \text{ to } 3.6 \text{ V})$ •
- Output current: $|I_{OH}|/I_{OL} = 24 \text{ mA} (\text{min}) (V_{CC} = 3.0 \text{ V})$ •
- Latch-up performance: ±500 mA
- Available in JEDEC SOP, JEITA SOP and TSSOP
- · Power-down protection provided on all inputs and outputs
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 32 type


SOP14-P-300-1.27: 0.18 g (typ.) SOL14-P-150-1.27: 0.12 g (typ.) TSSOP14-P-0044-0.65: 0.06 g (typ.)

Note: xxxFN (JEDEC SOP) is not available in Japan.

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

Inp	uts	Outputs
А	В	Y
L	L	L
L H		н
Н	L	н
Н	Н	н

Maximum Ratings

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	-0.5 to 7.0	V	
DC input voltage	V _{IN}	-0.5 to 7.0	V	
		-0.5 to 7.0 (Note 1)		
DC output voltage	Vout	-0.5 to V _{CC} + 0.5	V	
		(Note 2)		
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{ОК}	±50 (Note 3)	mA	
DC output current	lout	±50	mA	
Power dissipation	PD	180	mW	
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	-65 to 150	°C	

Note 1: $V_{CC} = 0 V$

Note 2: High or low state. IOUT absolute maximum rating must be observed.

Note 3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	2.0 to 3.6	V	
Tower supply voltage	VCC	1.5 to 3.6 (Note 4)	v	
Input voltage	V _{IN}	0 to 5.5	V	
Output voltage	Vout	0 to 5.5 (Note 5)	V	
Output voltage	V001	0 to V _{CC} (Note 6)		
Output current	lau/lau	±24 (Note 7)	mA	
Output current	IOH/IOL	±12 (Note 8)	ma	
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 9)	ns/V	

Note 4: Data retention only

Note 5: $V_{CC} = 0 V$

Note 6: High or low state

Note 7: $V_{CC} = 3.0$ to 3.6 V

Note 8: $V_{CC} = 2.7$ to 3.0 V

Note 9: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C)

Characteristi	CS	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit
Innut voltogo	H-level	VIH				2.0	_	V
Input voltage	L-level	VIL	_		2.7 to 3.6		0.8	v
			$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2		V
	H-level	Vон		$I_{OH} = -12 \text{ mA}$	2.7	2.2	_	
Output voltage				I _{OH} = -18 mA	3.0	2.4	_	
				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	
		level V _{OL}	$V_{IN} = V_{IL}$	I _{OL} = 100 μA	2.7 to 3.6	_	0.2	
				$I_{OL} = 12 \text{ mA}$	2.7	_	0.4	
	L-level			I _{OL} = 16 mA	3.0	_	0.4	
				$I_{OL} = 24 \text{ mA}$	3.0		0.55	
Input leakage current		I _{IN}	V _{IN} = 0 to 5.5 V		2.7 to 3.6	_	±5.0	μA
Power-off leakage curr	ent	IOFF	$V_{IN}/V_{OUT} = 5.5 V$		0	_	10.0	μA
Quieseent augely aurrent		Icc	$V_{IN} = V_{CC}$ or GND		2.7 to 3.6	_	10.0	
Quiescent supply current	V _{IN} = 3.6 to 5.5 V		2.7 to 3.6		±10.0	μA		
Increase in Icc per inpu	ut	Δlcc	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	500	

AC Characteristics (Ta = -40 to 85°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.7	_	6.2	ns
	t _{pHL}		$\textbf{3.3}\pm\textbf{0.3}$	1.5	5.5	
Output to output skew	t _{osLH}	(Note 10	2.7	_	_	ns
	t _{osHL}	(Note 10)	$\textbf{3.3}\pm\textbf{0.3}$	_	1.0	115

Note 10: Parameter guaranteed by design.

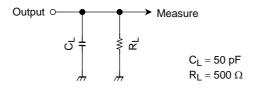
 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.5$ ns, $C_L = 50$ pF, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V

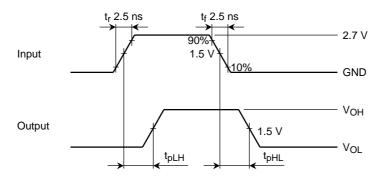
Capacitive Characteristics (Ta = 25°C)

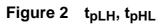
Characteristics	Symbol	Test Condition	ſ	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_		3.3	7	pF
Output capacitance	C _{OUT}	_		0	8	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz (No	ote 11)	3.3	25	pF

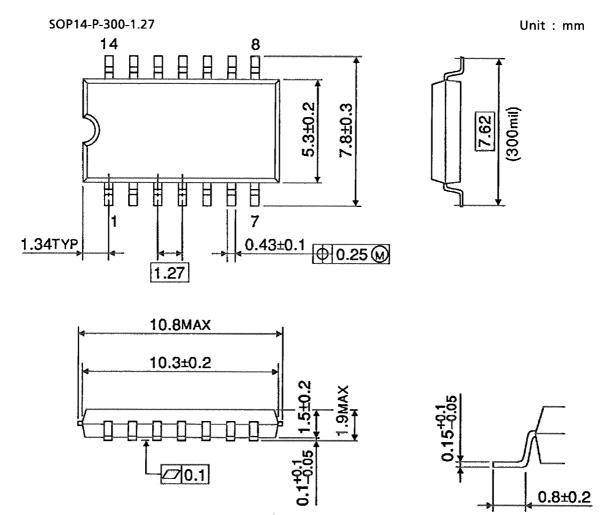

Note 11: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

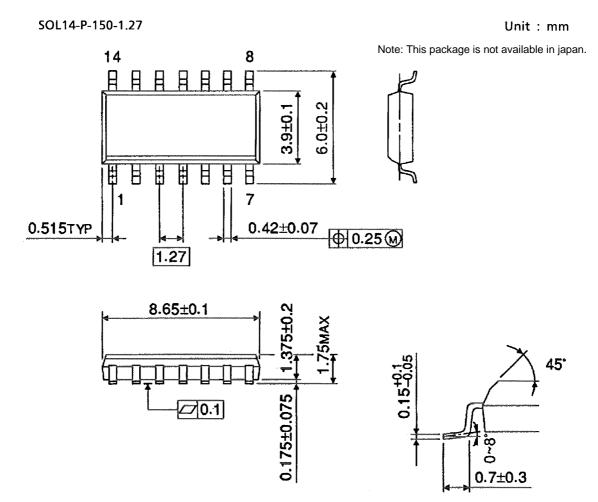
 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4$ (per gate)


TOSHIBA


AC Test Circuit



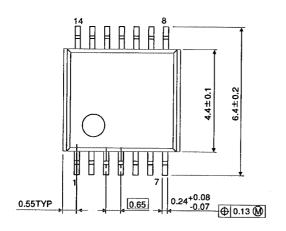
AC Waveform



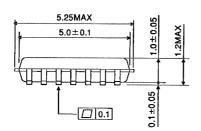
Package Dimensions

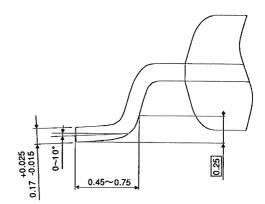
Weight: 0.18 g (typ.)

Package Dimensions



Weight: 0.12 g (typ.)


Unit : mm


Package Dimensions

TSSOP14-P-0044-0.65

Weight: 0.06 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.