阅读申明 - 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。 - 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。 - 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。 - 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。 # **Read Statement** - 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner. - 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information. - 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard. - 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets". TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic # TC7WH32FU,TC7WH32FK ### **Dual 2-Input OR Gate** The TC7WH32 is an advanced high speed CMOS 2-Input OR Gate fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The internal circuit is composed of 4 stages including buffer output, which provide high noise immunity and stable output. An input protection circuit ensures that 0 to 7 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages. #### **Features** - High speed: $t_{pd} = 3.8 \text{ ns (typ.)}$ at $V_{CC} = 5 \text{ V}$ - Low power dissipation: $I_{CC} = 2 \mu A \text{ (max)}$ at $T_a = 25 \text{°C}$ - High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min) - Power down protection is provided on all inputs. - Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$ - Wide operating voltage range: V_{CC} (opr) = 2~5.5 V #### Marking #### Pin Assignment (top view) Weight SSOP8-P-0.65: 0.02 g (typ.) SSOP8-P-0.50A: 0.01 g (typ.) ### **Logic Diagram** #### **Truth Table** | Α | В | Υ | |---|---|---| | Н | Н | Н | | L | Н | Н | | Н | L | Н | | L | L | L | # **Absolute Maximum Ratings (Ta = 25°C)** | Characteristics | Symbol | Rating | Unit | |------------------------------------|------------------|----------------------------|-------| | Supply voltage range | V_{CC} | -0.5~7.0 | V | | DC input voltage | V _{IN} | -0.5~7.0 | V | | DC output voltage | V _{OUT} | -0.5~V _{CC} + 0.5 | V | | Input diode current | l _{IK} | -20 | mA | | Output diode current | I _{OK} | ±20 | mA | | DC output current | lout | ±25 | mA | | DC V _{CC} /ground current | I _{CC} | ±50 | mA | | Power dissipation | D- | 300 (SM8) | mW | | | P _D | 200 (US8) | IIIVV | | Storage temperature | T _{stg} | -65~150 | °C | | Lead temperature (10 s) | TL | 260 | °C | Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc). # **Operating Ranges** | Characteristics | Symbol | Rating | Unit | | |--------------------------|------------------|--|------|--| | Supply voltage | V_{CC} | 2.0~5.5 | V | | | Input voltage | V _{IN} | 0~5.5 | V | | | Output voltage | V _{OUT} | 0~V _{CC} | V | | | Operating temperature | T _{opr} | -40~85 | °C | | | Input rise and fall time | dt/dv | 0~100 (V _{CC} = 3.3 ± 0.3 V) | ns/V | | | input rise and rail time | avav | $0 \sim 20 \ (V_{CC} = 5 \pm 0.5 \ V)$ | | | ## **Electrical Characteristics** ### **DC Characteristics** | Observatoristics Overshall | | T 10 I'' | | | Ta = 25°C | | | Ta = -40~85°C | | | |--|-----------------|--|--------------------------|---------------------|-----------------------|------|-----------------------|-----------------------|-----------------------|------| | Characteristics | Symbol | Test Condition | | V _{CC} (V) | Min | Тур. | Max | Min | Max | Unit | | High-level input voltage V _{IH} | | _ | | 2.0 | 1.50 | _ | _ | 1.50 | _ | V | | | | | | 3.0~
5.5 | V _{CC} × 0.7 | _ | _ | V _{CC} × 0.7 | _ | | | | | _ | | 2.0 | _ | _ | 0.50 | _ | 0.50 | | | Low-level input voltage | V_{IL} | | | 3.0~
5.5 | _ | _ | V _{CC} × 0.3 | _ | V _{CC} × 0.3 | V | | | V _{ОН} | $V_{IN} = V_{IH}$ or V_{IL} | I _{OH} = -50 μA | 2.0 | 1.9 | 2.0 | | 1.9 | _ | V | | | | | | 3.0 | 2.9 | 3.0 | | 2.9 | _ | | | High-level output voltage | | | | 4.5 | 4.4 | 4.5 | | 4.4 | _ | | | | | | $I_{OH} = -4 \text{ mA}$ | 3.0 | 2.58 | _ | | 2.48 | _ | | | | | | I _{OH} = -8 mA | 4.5 | 3.94 | _ | _ | 3.80 | _ | | | | | $V_{IN} = V_{IL}$ | | 2.0 | _ | 0.0 | 0.1 | _ | 0.1 | | | | | | $I_{OL} = 50 \mu A$ | 3.0 | _ | 0.0 | 0.1 | _ | 0.1 | | | Low-level output voltage | V_{OL} | | | 4.5 | _ | 0.0 | 0.1 | _ | 0.1 | V | | | | | I _{OL} = 4 mA | 3.0 | _ | _ | 0.36 | _ | 0.44 | | | | | | I _{OL} = 8 mA | 4.5 | _ | _ | 0.36 | _ | 0.44 | | | Input leakage current | I _{IN} | V _{IN} = 5.5 V or GND | | 0~
5.5 | _ | _ | ±0.1 | _ | ±1.0 | μА | | Quiescent supply current | Icc | V _{IN} = V _{CC} or GND | | 5.5 | _ | _ | 2.0 | _ | 20.0 | μΑ | # AC Characteristics (input: $t_r = t_f = 3 \text{ ns}$) | Characteristics | Symbol | Test Condition | | n T | | Ta = 25°C | | Ta = -40~85°C | | - Unit | | |-------------------------------|--------------------------------------|----------------|---------------------|---------------------|-----------|-----------|------|---------------|------|--------|-----| | | | | V _{CC} (V) | C _L (pF) | Min | Тур. | Max | Min | Max | Offic | | | Propagation delay time | t _{pLH}
t _{pHL} | _ | 3.3 ± 0.3 | 15 | _ | 5.5 | 7.9 | 1.0 | 9.5 | - ns | | | | | | | 50 | _ | 8.0 | 11.4 | 1.0 | 13.0 | | | | | | | F 0 + 0 F | 15 | _ | 3.8 | 5.5 | 1.0 | 6.5 | | | | | | 5.0 ± 0.5 | | | 5.0 ± 0.5 | 3.0 ± 0.5 | 50 | _ | 5.3 | 7.5 | 1.0 | | Input capacitance | C _{IN} | | _ | | _ | 4 | 10 | _ | 10 | pF | | | Power dissipation capacitance | C _{PD} | | | (Note) | _ | 14 | _ | _ | _ | pF | | Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. 3 Average operating current can be obtained by the equation: $$I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/2$$ # Noise Characteristics (Ta = 25°C, input: $t_r = t_f = 3$ ns) | Characteristics | Symbol | Test Condition | V _{CC} (V) | Тур. | Limit | Unit | |--|------------------|------------------------|---------------------|------|-------|------| | Quiet output maximum dynamic V_{OL} | V _{OLP} | C _L = 50 pF | 5.0 | 0.3 | 0.8 | V | | Quiet output minimum dynamic $V_{\mbox{OL}}$ | V _{OLV} | C _L = 50 pF | 5.0 | -0.3 | -0.8 | V | | Minimum high level dynamic input voltage | V _{IHD} | C _L = 50 pF | 5.0 | _ | 3.5 | ٧ | | Maximum low level dynamic input voltage | V _{ILD} | C _L = 50 pF | 5.0 | | 1.5 | ٧ | # **Input Equivalent Circuit** Unit: mm # **Package Dimensions** SSOP8-P-0.65 5 Weight: 0.02 g (typ.) # **Package Dimensions** SSOP8-P-0.50A Unit: mm 6 Weight: 0.01 g (typ.) ## **RESTRICTIONS ON PRODUCT USE** 20070701-EN GENERAL - The information contained herein is subject to change without notice. - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. - The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk. - The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. - Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.