

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

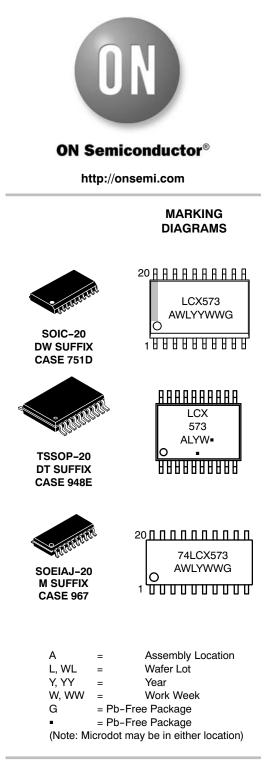
1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

Low-Voltage CMOS Octal Transparent Latch Flow Through Pinout

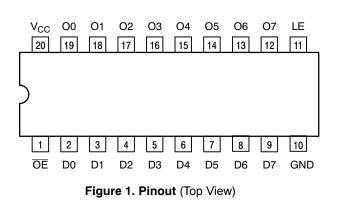

With 5 V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX573 is a high performance, non-inverting octal transparent latch operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX573 inputs to be safely driven from 5.0 V devices.

The MC74LCX573 contains 8 D-type latches with 3-state standard outputs. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition, the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the high impedance state, but this does not interfere with new data entering into the latches. The LCX573 flow through design facilitates easy PC board layout.

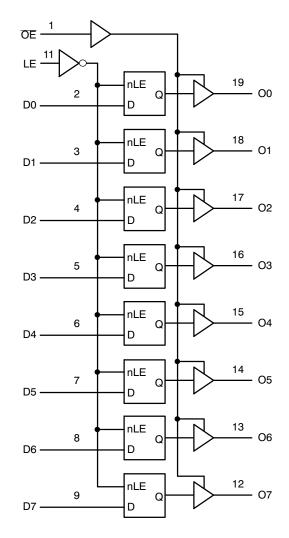
Features

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 5.0 V Tolerant Interface Capability With 5.0 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0 V$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000 V Machine Model >200 V
- Pb-Free Packages are Available



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.


1

MC74LCX573

PIN NAMES

FUNCTION
Output Enable Input
Latch Enable Input
Data Inputs
3-State Latch Outputs

TRUTH TABLE INPUTS OUTPUTS OE LE On **OPERATING MODE** Dn L Н Н Н Transparent (Latch Disabled); Read Latch L н L L L Н L h Latched (Latch Enabled) Read Latch L L L 1 L L Х NC Hold; Read Latch Ζ Н L Х Hold; Disabled Outputs н Н н Ζ Transparent (Latch Disabled); Disabled Outputs н Ζ н L н L h Ζ Latched (Latch Enabled); Disabled Outputs z н Т Т

H = High Voltage Level;

h = High Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition

L = Low Voltage Level

I = Low Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition

NC = No Change, State Prior to the Latch Enable High-to-Low Transition

X = High or Low Voltage Level or Transitions are Acceptable

Z = High Impedance State For I_{CC} Reasons DO NOT FLOAT Inputs

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_I \le +7.0$		V
V _O	DC Output Voltage	$-0.5 \le V_0 \le +7.0$	Output in 3-State	V
		$-0.5 \le V_O \le V_{CC} + 0.5$	Output in HIGH or LOW State (Note 1)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
lo	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_O absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Para	meter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	3.6 3.6	V
VI	Input Voltage		0		5.5	V
V _O	Output Voltage	(HIGH or LOW State) (3-State)	0 0		V _{CC} 5.5	V
I _{OH}	HIGH Level Output Current	V _{CC} = 3.0 V - 3.6 V V _{CC} = 2.7 V - 3.0 V V _{CC} = 2.3 V - 2.7 V			-24 -12 -8	mA
I _{OL}	LOW Level Output Current	V _{CC} = 3.0 V - 3.6 V V _{CC} = 2.7 V - 3.0 V V _{CC} = 2.3 V - 2.7 V			+ 24 + 12 + 8	mA
T _A	Operating Free-Air Temperature		-55		+125	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate, V_{II}	_N from 0.8 V to 2.0 V, V_{CC} = 3.0 V	0		10	ns/V

ORDERING INFORMATION

Device	Device Package	
MC74LCX573DW	SOIC-20	38 Units / Rail
MC74LCX573DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74LCX573DWR2	SOIC-20	1000 Tape & Reel
MC74LCX573DWR2G	SOIC-20 (Pb-Free)	1000 Tape & Reel
MC74LCX573DT	TSSOP-20*	75 Units / Rail
MC74LCX573DTG	TSSOP-20*	75 Units / Rail
MC74LCX573DTR2	TSSOP-20*	2000 Tape & Reel
MC74LCX573DTR2G	TSSOP-20*	2000 Tape & Reel
MC74LCX573M	SOEIAJ-20	40 Units / Rail
MC74LCX573MG	SOEIAJ-20 (Pb-Free)	40 Units / Rail
MC74LCX573MEL	SOEIAJ-20	2000 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb-Free.

DC ELECTRICAL CHARACTERISTICS

			T _A = −40°C to +85°C		T _A = -55°C to +125°C		
Symbol	Characteristic	Condition	Min	Max	Min	Max	Unit
V _{IH}	HIGH Level Input	$2.3~V \le V_{CC} \le 2.7~V$	1.7		1.7		V
	Voltage (Note 2)	$2.7 \text{ V} \leq \text{V}_{CC} \leq 3.6 \text{ V}$	2.0		2.0		
VIL	LOW Level Input	$2.3~V \leq V_{CC} \leq 2.7~V$		0.7		0.7	V
	Voltage (Note 2)	$2.7 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}$		0.8		0.8	
V _{OH}	HIGH Level Out-	2.3 V \leq V_{CC} \leq 3.6 V; I_{OL} = 100 μA	V _{CC} - 0.2		V _{CC} - 0.2		V
	put Voltage	V _{CC} = 2.3 V; I _{OH} = -8 mA	1.8		1.8		
		V _{CC} = 2.7 V; I _{OH} = -12 mA	2.2		2.2		
		V _{CC} = 3.0 V; I _{OH} = -18 mA	2.4		2.4		
	V _{CC} = 3.0 V; I _{OH} = -24 mA	2.2		2.2			
- OL	VOL LOW Level Out- put Voltage	2.3 V \leq V_{CC} \leq 3.6 V; I_{OL} = 100 μA		0.2		0.2	V
		V _{CC} = 2.3 V; I _{OL} = 8 mA		0.6		0.6	
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4		0.4	
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55		0.60	
lı	Input Leakage Current	$2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; 0 \text{ V} \le \text{V}_{I} \le 5.5 \text{ V}$		±5		±5	μA
I _{OZ}	3-State Output Current	$\begin{array}{c} 2.3 \leq V_{CC} \leq 3.6 \text{ V}; \ 0V \leq V_O \leq 5.5 \text{ V}; \\ V_I = V_{IH} \text{ or } V_{IL} \end{array}$		±5		±5	μA
I _{OFF}	Power-Off Leak- age Current	$V_{CC} = 0 \text{ V}; \text{ V}_{I} \text{ or } \text{ V}_{O} = 5.5 \text{ V}$		10		10	μA
Icc	Quiescent Supply	$2.3 \leq V_{CC} \leq 3.6$ V; V_I = GND or V_{CC}		10		10	μA
	Current	$2.3 \leq V_{CC} \leq 3.6$ V; $3.6 \leq V_{I}$ or $V_{O} \leq 5.5$ V		±10		±10	
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \leq V_{CC} \leq 3.6$ V; V_{IH} = V_{CC} – 0.6 V		500		500	μA

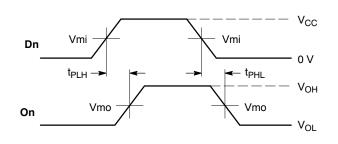
2. These values of V₁ are used to test DC electrical characteristics only.

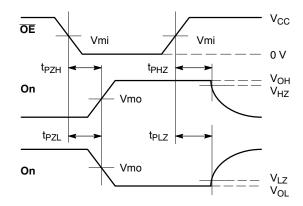
AC CHARACTERISTICS t_R = t_F = 2.5 ns; R_L = 500 Ω

					Lin	nits			
					T _A = -55°C	to +125°C	;		
			V _{CC} = 3.3	$\mathbf{V} \pm 0.3 \ \mathbf{V}$	V _{CC} =	2.7 V	V _{CC} = 2.5	5 V \pm 0.2 V	
			C _L =	50 pF	C _L =	50 pF	C _L =	30 pF	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay D_n to O_n	1	1.5 1.5	8.0 8.0	1.5 1.5	9.0 9.0	1.5 1.5	9.6 9.6	ns
t _{PLH} t _{PHL}	Propagation Delay LE to O _n	3	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	1.5 1.5	10.5 10.5	ns
t _{PZH} t _{PZL}	Output Enable Time to HIGH and LOW Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	1.5 1.5	10.5 10.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	6.5 6.5	1.5 1.5	7.0 7.0	1.5 1.5	7.8 7.8	ns
t _s	Setup TIme, HIGH or LOW D_n to LE	3	2.5		2.5		4.0		
t _h	Hold TIme, HIGH or LOW D _n to LE	3	1.5		1.5		2.0		
tw	LE Pulse Width, HIGH	3	3.3		3.3	1	4.0		
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3)			1.0 1.0					ns

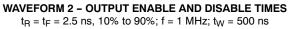
 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

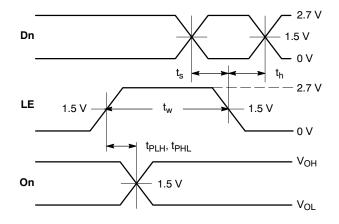
MC74LCX573


DYNAMIC SWITCHING CHARACTERISTICS

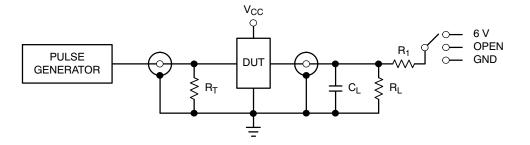

			Т	_ _A = +25°0)	
Symbol	Characteristic	Condition	Min	Тур	Мах	Unit
V _{OLP}	Dynamic LOW Peak Voltage (Note 4)	$ \begin{array}{l} V_{CC} = 3.3 \; V, \; C_{L} = 50 \; pF, \; V_{IH} = 3.3 \; V, \; V_{IL} = 0 \; V \\ V_{CC} = 2.5 \; V, \; C_{L} = 30 \; pF, \; V_{IH} = 2.5 \; V, \; V_{IL} = 0 \; V \end{array} $		0.8 0.6		V V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4)	$ \begin{array}{l} V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 V, V_{IL} = 0 V \\ V_{CC} = 2.5 V, C_L = 30 \text{pF}, V_{IH} = 2.5 V, V_{IL} = 0 V \end{array} $		-0.8 -0.6		V V

 Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.


CAPACITIVE CHARACTERISTICS


Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF

 $\begin{array}{l} \textbf{WAVEFORM 1 - PROPAGATION DELAYS} \\ t_R = t_F = 2.5 \text{ ns}, 10\% \text{ to } 90\%; \text{ f} = 1 \text{ MHz}; t_W = 500 \text{ ns} \end{array}$

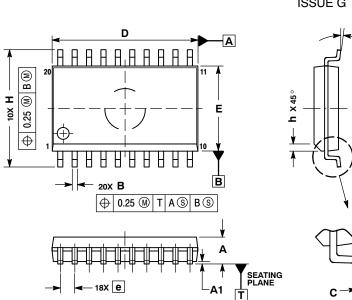


	V _{cc}				
Symbol	3.3 V ± 0.3 V	2.7 V	2.5 V ± 0.2 V		
Vmi	1.5 V	1.5 V	V _{CC} /2		
Vmo	1.5 V	1.5 V	V _{CC} /2		
V _{HZ}	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V		
V _{LZ}	V _{OL} – 0.3 V	V _{OL} - 0.3 V	V _{OL} – 0.15 V		

WAVEFORM 3 – LE to On PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn to LE SETUP AND HOLD TIMES $t_R = t_F = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_W = 500$ ns except when noted

Figure 3. AC Waveforms

MC74LCX573

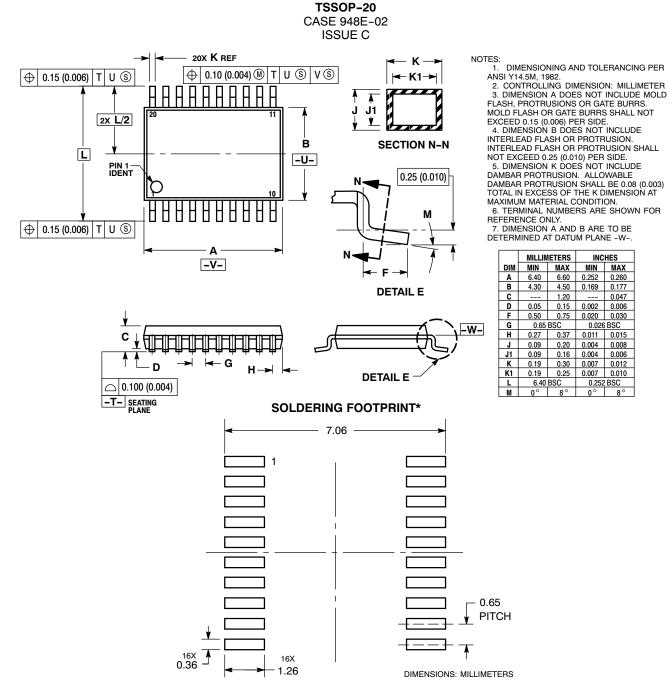


TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6 V at V _{CC} = 3.3 ± 0.3 V 6 V at V _{CC} = 2.5 ± 0.2 V
Open Collector/Drain $t_{\mbox{PLH}}$ and $t_{\mbox{PHL}}$	6 V
t _{PZH} , t _{PHZ}	GND

 C_L = 50 pF at V_{CC} = 3.3 \pm 0.3 V or equivalent (includes jig and probe capacitance) C_L = 30 pF at V_{CC} = 2.5 \pm 0.2 V or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

PACKAGE DIMENSIONS

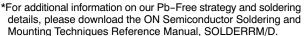

SO-20 WB CASE 751D-05 ISSUE G

0

- NOTES:
 DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35 0.49			
С	0.23	0.32		
D	12.65	12.95		
Ε	7.40	7.60		
e	1.27	BSC		
Η	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0 °	7 °		

PACKAGE DIMENSIONS

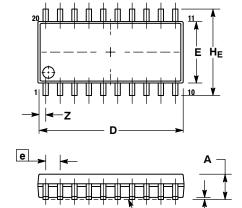

0.260

0.177

0.047

0.006

8

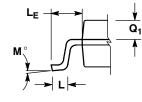

PACKAGE DIMENSIONS

SOEIAJ-20 CASE 967-01 **ISSUE A**

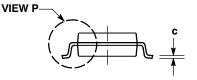
NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2.
 - CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS D AND E DO NOT INCLUDE 3.
 - MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 - 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT
 - 5. INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.15	0.25	0.006	0.010
D	12.35	12.80	0.486	0.504
Е	5.10	5.45	0.201	0.215
е	1.27 BSC		0.050) BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
Μ	0 °	10 °	0 °	10 °
Q1	0.70	0.90	0.028	0.035
Z		0.81		0.032



 \oplus


0.13 (0.005) 🕅

Δ.

0.10 (0.004)

DETAIL P

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights or other rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications and the provided in SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are some or the specifications are actively applications and actual performance may vary incidents and a specifications are actively applications and actual performance may vary incidents and a specification by customer's technical experts. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are provided in the specifications are actively applications are actively applications are actively applications are actively applications and actively applications are acompleted and actively applications are active intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative