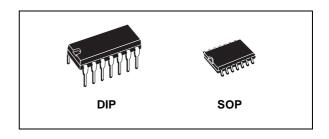
阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .



HCF4066B

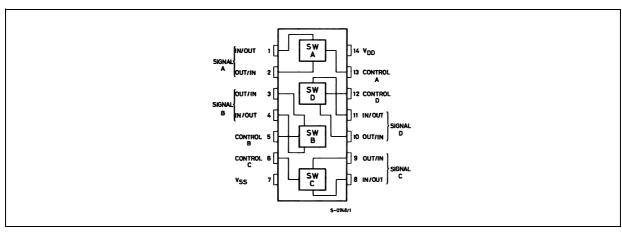
QUAD BILATERAL SWITCH FOR TRANSMISSION OR MULTIPLEXING OF ANALOG OR DIGITAL SIGNALS

- 15V DIGITAL OR ± 7.5V PEAK TO PEAK SWITCHING
- 125Ω TYPICAL ON RESISTANCE FOR 15V OPERATION
- SWITCH ON RESISTANCE MATCHED TO WITHIN 5Ω TYP. OVER 15V SIGNAL INPUT RANGE
- ON RESISTANCE FLAT OVER FULL PEAK TO PEAK SIGNAL RANGE
- HIGH ON/OFF OUTPUT VOLTAGE RATIO : 65dB TYP. at $f_{IS} = 10$ KHz, $R_{I} = 10$ K Ω
- HIGH DEGREE OF LINEARITY : < 0.5% DISTORTION TYP. at f_{IS} = 1KHz, V_{IS} = 5 V_{pp} , V_{DD} V_{SS} ≥ 10V, RL = 10K Ω
- EXTREMELY LOW OFF SWITCH LEAKAGE RESULTING IN VERY LOW OFFSET CURRENT AND HIGH EFFECTIVE OFF RESISTANCE: 10pA TYP.

 at V_{DD} V_{SS} = 10V, T_{amb} = 25°C
- EXTREMELY HIGH CONTROL INPUT IMPEDANCE (control circuit isolated from signal circuit 10¹²Ω typ.)
- \blacksquare LOW CROSSTALK BETWEEN SWITCHES : 50dB Typ. at f_{IS} = 0.9MHz, R_L = 1K Ω
- MATCHED CONTROL INPUT TO SIGNAL OUTPUT CAPACITANCE : REDUCES OUTPUT SIGNAL TRANSIENTS
- FREQUENCY RESPONSE SWITCH ON: 40MHz (Typ.)
- QUIESCENT CURRENT SPECIF. UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS

ORDER CODES

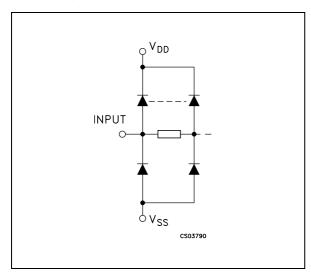
PACKAGE	TUBE	T&R
DIP	HCF4066BEY	
SOP	HCF4066BM1	HCF4066M013TR


- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

The HCF4066B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4066B is a QUAD BILATERAL SWITCH intended for the transmission or multiplexing of analog or digital signals.

It is pin for pin compatible with HCF4016B, but exhibits a much lower ON resistance. In addition,

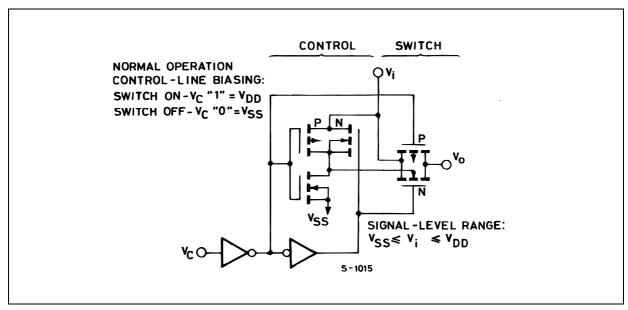

PIN CONNECTION

September 2001 1/9

the ON resistance is relatively constant over the full input signal range. The HCF4066B consists of four independent bilateral switches. A single control signal is required per switch. Both the p and n device in a given switch are biased ON or OFF simultaneously by the control signal. As shown in schematic diagram , the well of the n-channel device on each switch is either tied to the input when the switch is ON or to V_{SS} when the switch is OFF. This configuration eliminates

INPUT EQUIVALENT CIRCUIT

the variation of the switch-transistor threshold voltage with input signal, and thus keeps the ON resistance low over the full operating signal range. The advantages over single channel switches include peak input signal voltage swings equal to the full supply voltage, and more constant ON impedance over the input signal range. For sample and hold applications, however, the HCF4016B is recommended.


PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 4, 8, 11	A to D I/O	Independent Inputs/Outputs
2, 3, 9, 10	A to D O/I	Independent Outputs/ Inputs
13, 5, 6, 12	CONTROL A to D	Enable Inputs
7	V _{SS}	Negative Supply Voltage
14	V_{DD}	Positive Supply Voltage

TRUTH TABLE

CONTROL	SWITCH FUNCTION
Н	ON
L	OFF

$\begin{array}{l} \textbf{SCHEMATIC DIAGRAM} \text{ (1 OF 4 IDENTICAL SWITCHES AND ITS ASSOCIATED CONTROL} \\ \textbf{CIRCUITY)} \end{array}$

2/9

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
VI	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
l _l	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

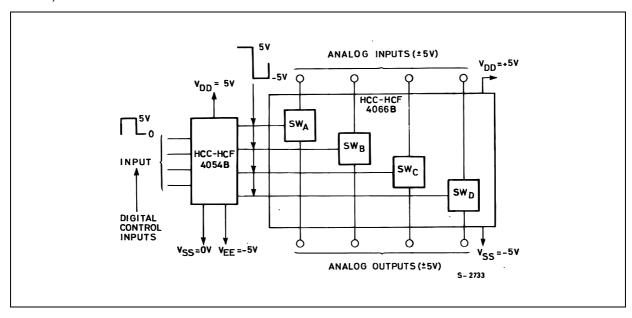
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

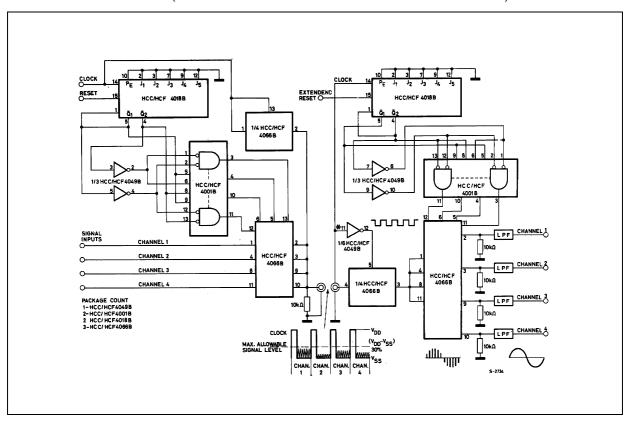
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

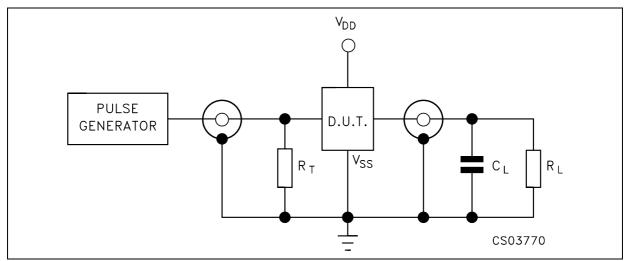
ELECTRICAL CHARACTERISTICS


 $(T_{amb} = 25^{\circ}C, Typical temperature coefficient for all V_{DD} value is 0.3 \%/^{\circ}C)$

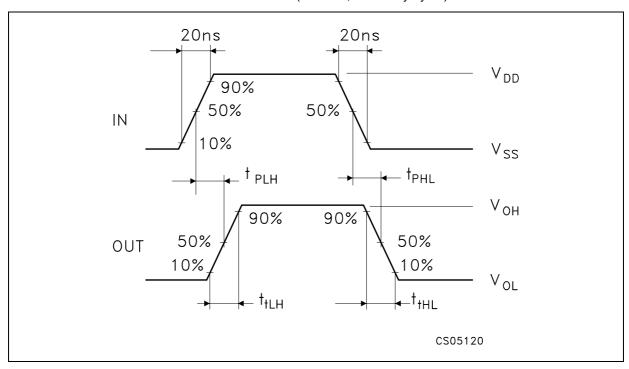
		Test Condition		Value								
Symbol	Parameter	V _I	V _{DD}	T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit	
		(V)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
١ _L	Quiescent Device	0/5	5		0.01	0.25		7.5		7.5		
	Current (all	0/10	10		0.01	0.5		15		15		
	switches ON or all switches OFF)	0/15	15		0.01	1		30		30	μΑ	
	Switches Of 1)	0/20	20		0.02	5		150		150		
SIGNAL	INPUTS (VIS) and C	UTPUTS (V _{OS})										
R _{ON}	Resistance	$V_C = V_{DD} R_L = 10K\Omega$	5		470	1050		1200		1200		
		Return to (V _{DD} -V _{SS})/2	10		180	400		500		500	Ω	
		$V_{IS} = V_{SS}$ to V_{DD}	15		125	240		300		300		
Δ_{ON}	Resistance Δ_{RON}		5		5							
	(between any 2 of	$R_L = 10K\Omega, V_C = V_{DD}$	10		10						Ω	
	4 switches)		15		15							
TDH	Total Harmonic Distortion	$V_C = V_{DD} = 5V$, V_{SS} V_{IS} (p-p) = 5V, $R_L =$ (sine wave centered $f_{IS} = 1$ KHz sine wa	10KΩ in 0V)		0.4						%	
	-3dB Cutoff Frequency (Switch on)	$V_C = V_{DD} = 5V, V_{SS}$ V_{IS} (p-p) = 5V, R _L = (sine wave centered	1ΚΩ		40						MHz	
	-50dB Feedthrough Frequency (switch off)	$V_C = V_{SS} = -5V$ V_{IS} (p-p) = 5V, $R_L =$ (sine wave centered	1ΚΩ		1						MHz	


		Test Condition		Value							
Symbol	Parameter	V _I	V _{DD}	Т	_ _A = 25°	С	-40 to 85°C		-55 to 125°C		Unit
	1	(v)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
	-50dB Crosstalk Frequency	$V_{C(A)} = V_{DD} = +5$ $V_{C(B)} = V_{SS} = -5$ $V_{IS(A)} = 5V (p-p)$ 50Ω source, $R_L = 1$	V		8						MHz
t _{pd}	Propagation Delay	$R_L = 200K\Omega, V_C = V$			20	40					
İ	Time (signal input to output)	$V_{SS} = GND, C_L = 5$	0pF		10	20					
	to duput)	V_{IS} = 10V square wave centered t_r , t_f = 20ns	on 5V		7	15					ns
C _{IS}	Input Capacitance				8						
C _{OS}	Output Capacitance	$V_C = V_{SS} = -5$	+5		8						pF
C _{IOS}	Feedthrough				0.5						
	Input/Output Leakage Current Switch OFF	$V_{C} = 0V$ $V_{IS} = 18V, V_{OS} = 0V$ $V_{IS} = 0V, V_{OS} = 18V$	18		±10 ⁻³	±0.1		±1		±1	μΑ
CONTRO	DL (V _C)		I	ı		I	I	I		·	
V _{ILC}	Control Input Low		5			1		1		1	
	Voltage	I _{IS} < 10 μA	10			2		2		2	V
.,	0	$V_{IS} = V_{SS}, V_{OS} = V_{DD}$	15			2		2		2	
V_{IHC}	Control Input High Voltage	and $V_{IS} = V_{DD}$, $V_{OS} = V_{SS}$	5	3.5			3.5		3.5		.,
	vollago	VIS - VDD, VOS - VSS	10 15	7 11			7 11		7		V
II	Input Leakage Current	$V_{IS} \le V_{DD}$ $V_{DD} - V_{SS} = 18V$	18	.,	±10 ⁻⁵	±0.1		±1	11	±1	μΑ
	Crosstalk (control input to signal output)	$V_C = 10V$ (sq. wave) t_r , $t_f = 20$ ns $R_L = 10$ KΩ	10		50						mV
	Turn - On	$V_{IN} = V_{DD} t_r, t_f = 20 ns$	5		35	70					
	Propagation Delay Time	$C_1 = 50 \text{pF}, R_1 = 1 \text{K}\Omega$	10		20	40					ns
			15		15	30					
	Control Input Repetition Rate	$V_{IS}=V_{DD}, V_{SS}=GND$	5		6						
	. topolition Nato	$R_L = 1K\Omega$ to GND $C_L = 50pF, V_C = 10V$	10 15		9.5						
		sq. wave center on 5V t _p , t _f = 20ns V _{OS} =1/2V _{OS} at 1KHz	15		9.5						MHz
Cı	Input Capacitance	Any Input			5	7.5					pF
<u> </u>	par capacitarioc	/iiiy iliput	<u> </u>	<u> </u>		7.5				<u> </u>	Ρı

4/9

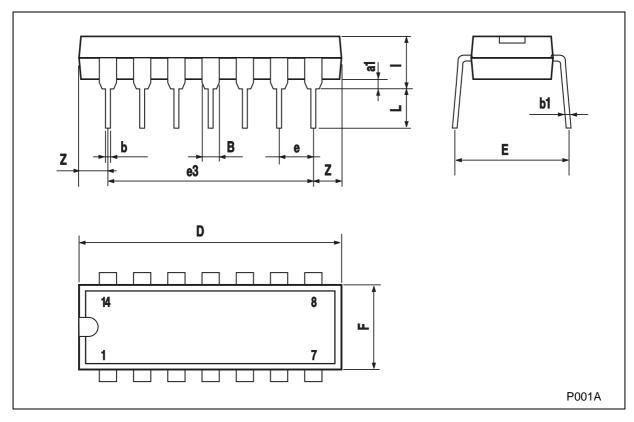

TYPICAL APPLICATIONS (BIDIRECTIONAL SIGNAL TRANSMISSION VIA DIGITAL CONTROL LOGIC)

TYPICAL APPLICATIONS (4-CHANNEL PAM MULTIPLEXER SYSTEM DIAGRAM)

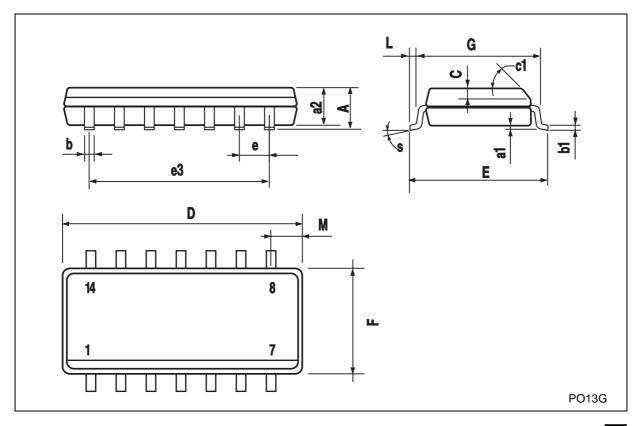


TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200KΩ R_T = Z_{OUT} of pulse generator (typically 50Ω)


WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)

47/ 6/9


Plastic DIP-14 MECHANICAL DATA

DIM		mm.			inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
a1	0.51			0.020					
В	1.39		1.65	0.055		0.065			
b		0.5			0.020				
b1		0.25			0.010				
D			20			0.787			
Е		8.5			0.335				
е		2.54			0.100				
e3		15.24			0.600				
F			7.1			0.280			
1			5.1			0.201			
L		3.3			0.130				
Z	1.27		2.54	0.050		0.100			

SO-14 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)	•			
D	8.55		8.75	0.336		0.344		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
еЗ		7.62			0.300			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.68			0.026		
S			8° (ı	max.)				

8/9

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

