

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

FAIRCHILD

SEMICONDUCTOR®

100LVEL16 3.3V ECL Differential Receiver

General Description

The 100LVEL16 is a low voltage differential receiver that contains an internally supplied voltage source, $V_{BB}.$ When used in a single ended input condition the unused input must be tied to $V_{BB}.$ When operating in this mode use a 0.01 μF capacitor to decouple V_{BB} and V_{CC} and also limit the current sinking or sourcing capability to 0.5mA. When V_{BB} is not used it should be left open.

With inputs open the differential Q outputs default LOW and $\overline{\rm Q}$ outputs default HIGH.

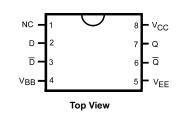
The 100 series is temperature compensated.

Features

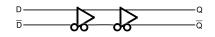
- Typical propagation delay of 300 ps
- Typical I_{EE} of 17 mA
- Internal pull-down resistors on D
- Fairchild MSOP-8 package is a drop-in replacement to ON TSSOP-8

January 2003

Revised February 2003


- Meets or exceeds JEDEC specification EIA/JESD78 IC latch-up test
- Moisture Sensitivity Level 1
- ESD Performance:
 - Human Body Model > 2000V Machine Model > 150V

Ordering Code:


Order Number	Package Number	Product Code Top Mark	Package Description
100LVEL16M	M08A	KVL16	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
100LVEL16M8 (Preliminary)	MA08D	KV16	8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide
Devices also available	in Tape and R	eel. Specify by	appending suffix letter "X" to the ordering code.

DS500776

Connection Diagram

Logic Diagram

Pin Descriptions

Pin Name	Description
Q, <u>Q</u>	ECL Data Outputs
D, D	ECL Data Inputs
V _{BB}	Reference Voltage
V _{CC}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

© 2003 Fairchild Semiconductor Corporation

Absolute Maximum Ratings(Note 1)

PECL Supply Voltage (V_{CC}) $V_{EE} = 0V$	0.0V to +8.0V
NECL Supply Voltage (V _{EE}) $V_{CC} = 0V$	0.0V to -8.0V
PECL DC Input Voltage (V _I) $V_{EE} = 0V$	0.0V to +6.0V
NECL DC Input Voltage (V _I) $V_{CC} = 0V$	0.0V to -6.0V
DC Output Current (I _{OUT})	
Continuous	50 mA
Surge	100 mA
V _{BB} Sink/Source Current (I _{BB})	±0.5 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions

PECL Power Supply $(V_{EE} = 0V)$ NECL Power Supply $(V_{CC} = 0V)$ Free Air Operating Temperature (T_A)

 $V_{CC}=3.0V\ to\ 3.8V$

 $V_{EE} = -3.8V \text{ to } -3.0V$ -40°C to +85°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Cumhal	Parameter	-40°C				25°C		85°C			Units
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 3)		2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 3)		1605	1745	1490	1595	1680	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single Ended)			2420	2135		2420	2135		2420	mV
VIL	Input LOW Voltage (Single Ended)	1490		1825	1490		1825	1490		1825	mV
V _{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	V
VIHCMR	Input HIGH Voltage Common Mode										
	Range (Differential) (Note 4)										
	V _{PP} < 500mV	1.2		2.9	1.1		2.9	1.1		2.9	v
	$V_{PP} \ge 500 mV$	1.5		2.9	1.4		2.9	1.4		2.9	v
IIH	Input HIGH Current (Note 5)			150			150			150	μA
I _{IL}	Input LOW Current (Note 5) D	0.5			0.5			0.5			μA
	D	-600			-600			-600			

LVPECL DC Electrical Characteristics $V_{CC} = 3.3V$; $V_{EE} = 0.0V$ (Note 2)

Note 2: Input and output parameters vary 1 to 1 with V_{CC}. V_{EE} can vary ± 0.3 V.

Note 3: Outputs are terminated through a 50Ω Resistor to V_{CC} – 2.0V.

Note 4: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1 to 1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V.

Note 5: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

Symbol	Parameter	−40°C				25°C		85°C			Units
Symbol	Falameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 7)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 7)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
VIH	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode										
	Range (Differential) (Note 8)										
	V _{PP} < 500mV	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	
	$V_{PP} \ge 500 mV$	-1.8		-0.4	-1.9		-0.4	-1.9		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current D	0.5			0.5			0.5			
	D	-600			-600			-600			μA

100LVEL16

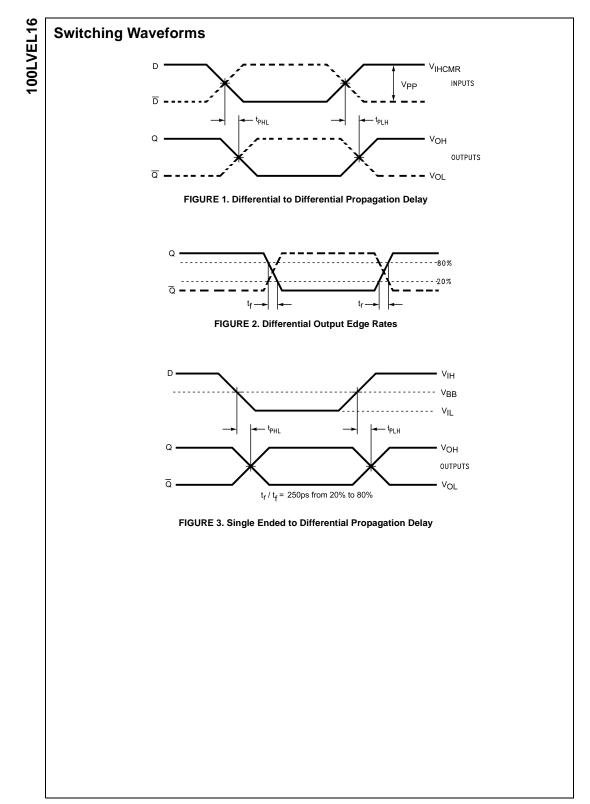
Input a output par eters vary 1 to V_{CC}. V_{EE} o ary

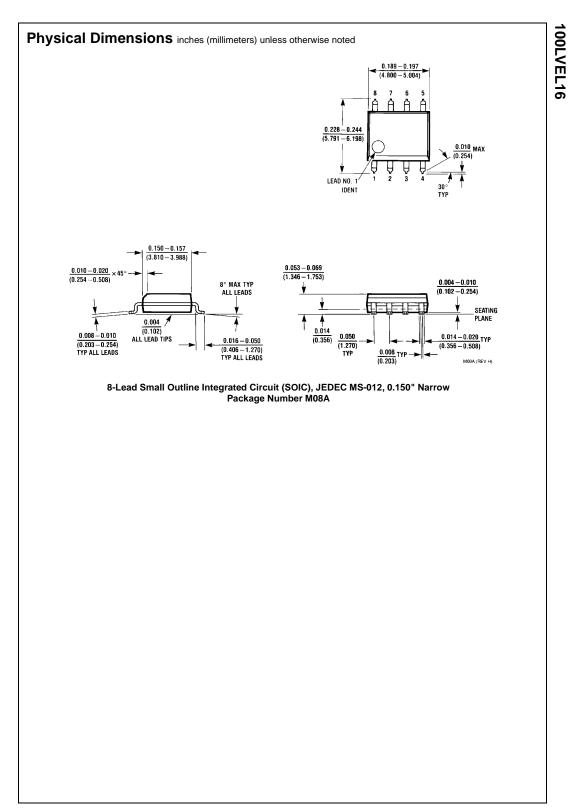
Note 7: Outputs are terminated through a 50 Ω Resistor to V_{CC} – 2.0V.

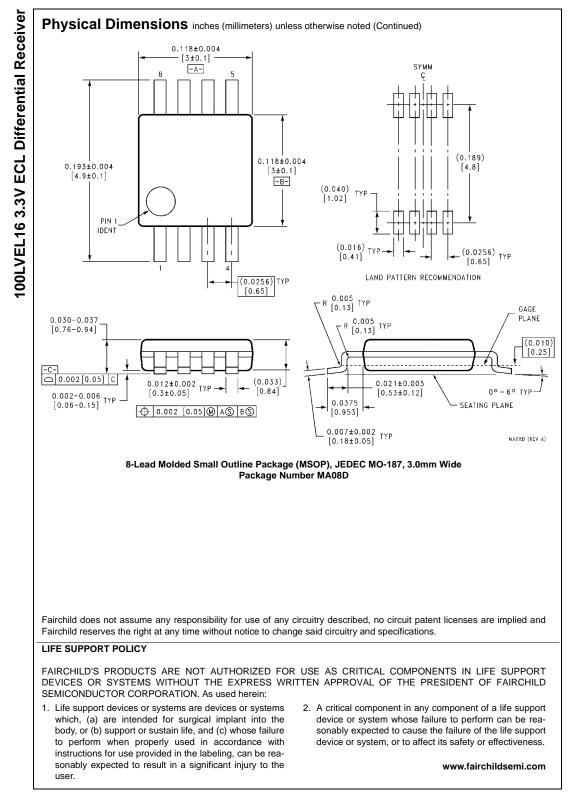
Note 8: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1-to-1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V.

Note 9: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.


100LVEL16 AC Electrical Characteristics $v_{CC} = 3.3V$; $v_{EE} = 0.0V$ or $v_{CC} = 0.0V$; $v_{EE} = -3.3V$ (Note 10) (Note 11)


Parameter	-40°C			25°C			85°C			Units	Figure
Farameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units	Number
Maximum Toggle Frequency		TBD			TBD			TBD		GHz	
Propagation Delay to Output (Diff)	150	275	400	225	300	375	240	315	390	ps	Figures
(SE)	100	275	450	175	300	425	190	315	440		1, 3
Duty Cycle Skew (Note 12)		5	30		5	20		5	20	ps	
Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps	
Input Swing	150		1000	150		1000	150		1000	mV	Figure 1
Output Rise Times Q (20% to 80%)	120	220	320	120	220	320	120	220	320	ps	Figure 2
F C	Propagation Delay to Output (Diff) (SE) Duty Cycle Skew (Note 12) Cycle-to-Cycle Jitter nput Swing	Maximum Toggle Frequency Propagation Delay to Output (Diff) 150 (SE) 100 Outy Cycle Skew (Note 12) Cycle-to-Cycle Jitter nput Swing 150	Maximum Toggle Frequency TBD Propagation Delay to Output (Diff) 150 275 Outy Cycle Skew (Note 12) 5 Cycle-to-Cycle Jitter TBD nput Swing 150	Maximum Toggle Frequency TBD Propagation Delay to Output (Diff) 150 275 400 (SE) 100 275 450 Duty Cycle Skew (Note 12) 5 30 Cycle-to-Cycle Jitter TBD nput Swing 150 1000	Maximum Toggle Frequency TBD Propagation Delay to Output (Diff) 150 275 400 225 (SE) 100 275 450 175 Duty Cycle Skew (Note 12) 5 30 200 Cycle-to-Cycle Jitter TBD 1000 150	Maximum Toggle Frequency TBD TBD Propagation Delay to Output (Diff) 150 275 400 225 300 (SE) 100 275 450 175 300 Duty Cycle Skew (Note 12) 5 30 5 Cycle-to-Cycle Jitter TBD TBD TBD nput Swing 150 1000 150	Maximum Toggle Frequency TBD TBD Propagation Delay to Output (Diff) 150 275 400 225 300 375 (SE) 100 275 450 175 300 425 Duty Cycle Skew (Note 12) 5 30 5 20 Cycle-to-Cycle Jitter TBD TBD TBD nput Swing 150 1000 150 1000	Maximum Toggle Frequency TBD TBD Propagation Delay to Output (Diff) (SE) 150 275 400 225 300 375 240 (SE) 100 275 450 175 300 425 190 Duty Cycle Skew (Note 12) 5 30 5 20 Cycle-to-Cycle Jitter TBD TBD 100 150	Maximum Toggle Frequency TBD TBD TBD Propagation Delay to Output (Diff) 150 275 400 225 300 375 240 315 (SE) 100 275 450 175 300 425 190 315 Duty Cycle Skew (Note 12) 5 30 5 20 5 Cycle-to-Cycle Jitter TBD TBD TBD TBD nput Swing 150 1000 150 1000 150	Maximum Toggle Frequency TBD TBD TBD Propagation Delay to Output (Diff) 150 275 400 225 300 375 240 315 390 (SE) 100 275 450 175 300 425 190 315 440 Duty Cycle Skew (Note 12) 5 30 5 20 5 20 Cycle-to-Cycle Jitter TBD TBD TBD TBD 100 150 1000 150 1000 150 1000	Maximum Toggle Frequency TBD TBD GHz Propagation Delay to Output (Diff) 150 275 400 225 300 375 240 315 390 ps Outy Cycle Skew (Note 12) 5 30 5 20 5 20 5 20 ps Cycle-to-Cycle Jitter TBD 1000 150 1000 150 1000 mV


Note 10: V_{EE} can vary $\pm\,0.3V.$

Note 11: Measured using a 750 mV input swing centered at V_{CC} - 1.32V; 50% duty cycle clock source; t_r = t_f = 250 ps (20% - 80%) at f_{IN} = 1 MHz. All loading with 50 Ω to V_{CC} – 2.0V.

Note 12: Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device under identical conditions.

