阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

January 2003 Revised January 2003

100LVELT22 3.3V Dual LVTTL/LVCMOS to Differential LVPECL Translator

General Description

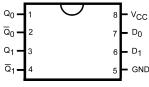
The 100LVELT22 is a LVTTL/LVCMOS to differential LVPECL translator operating from a single ± 3.3 V supply.

Both outputs of a differential pair should be terminated in 50Ω to V_{CC} - 2.0V even if only one output is being used. If an output pair is unused both outputs can be left open (un-terminated).

The 100 series is temperature compensated.

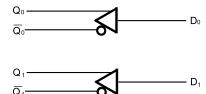
Features

- Typical propagation delay of 350 ps
- <100 ps skew between outputs
- Max I_{CC} of 28 mA at 25°C
- When TTL input is left Open Q output defaults HIGH
- Fairchild MSOP-8 package is a drop-in replacement to ON TSSOP-8
- Flow through pinout
- Meets or exceeds JEDEC specification EIA/JESD78 IC latch-up test
- Moisture Sensitivity Level 1
- ESD Performance:


Human Body Model > 2000V Machine Model > 200V

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description
100LVELT22M	M08A	KVT22	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
100LVELT22M8 (Preliminary)	MA08D	KR22	8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide


Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Top View

Logic Diagram

Pin Descriptions

Pin Name	Description						
Q_n, \overline{Q}_n	LVPECL Differential Outputs						
D ₀ , D ₁	LVTTL/LVCMOS Inputs						
V _{CC}	Positive Supply						
GND	Ground						

Absolute Maximum Ratings(Note 1)

0.0V to +7.0V Supply Voltage (V_{CC}) 0.0V to +7.0V Input Voltage $(V_I) V_I \le V_{CC}$

DC Output Current (I_{OUT})

Continuous 50 mA Surge 100 mA -65°C to +150°C Storage Temperature (T_{STG})

Power Supply Operating

Conditions

for actual device operation.

Recommended Operating

 $V_{CC} = 3.0V$ to 3.8VLVTTL/LVCMOS Input Voltage 0.0V to $V_{\rm CC}$ -40°C to $+85^{\circ}\text{C}$ Free Air Operating Temperature (T_A)

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions

LVPECL DC Electrical Characteristics V_{CC} = 3.3V; GND = 0.0V (Note 2)

Symbol	Parameter	-40°C			25°C			85°C			Units
Cyllibol	i arameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Oilita
I _{CC}	Power Supply Current			28			28			29	mA
V _{OH}	Output HIGH Voltage (Note 3)	2215		2420	2275		2420	2275		2420	mV
V _{OL}	Output LOW Voltage (Note 3)	1470		1745	1490		1680	1490		1680	mV

Note 2: Output parameters vary 1 to 1 with V_{CC} . V_{CC} can vary $\pm 0.15 V$.

Note 3: Outputs are terminated through a 50Ω resistor to $V_{CC}-2.0V.$

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than

LVTTL/LVCMOS DC Electrical Characteristics $V_{CC} = 3.3V$; GND = 0.0V (Note 4)

Symbol	Parameter	T _A =	-40°C to 8	5°C	Units	Condition			
- Cyllibol	i didiliotoi	Min	Тур	Max	Omio	- Community			
I _{IH}	Input HIGH Current			20	μА	$V_{IN} = 2.7V$ $V_{IN} = V_{CC}$			
				100	μΛ	$V_{IN} = V_{CC}$			
I _{IL}	Input LOW Current			-200	μΑ	V _{IN} = 0.5V			
V _{IK}	Clamp Diode Voltage			-1.2	V	I _{IN} = -18 mA			
V _{IH}	Input HIGH Voltage	2.0			V				
V _{IL}	Input LOW Voltage			0.8	V				

Note 4: V_{CC} can vary ±0.15V.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

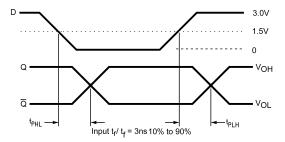
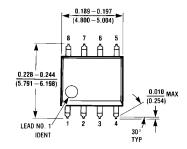
AC Electrical Characteristics V_{CC} = 3.3V; GND = 0.0V (Note 5)

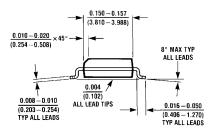
Symbol	Parameter	–40°C			25°C			85°C			Units	Figure
Syllibol	Farameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units	Number
f _{MAX}	Maximum Toggle Frequency		TBD			TBD			TBD		MHz	
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps	
t _{PLH} / t _{PHL}	Propagation Delay (Note 6)	200	350	600	200	350	600	200	350	600	ps	Figure 1
t _{SKEW}	Skew Output-to-Output		30	100		30	100		30	100	ps	
	Part-to-Part			400			400			400	ps	
t _r , t _f	Output Rise Time Q (20% to 80%)	200		550	200		500	200		500	ns	Figure 2

Note 5: V_{CC} can vary ±0.15V.

Note 6: Specifications for standard LVTTL input signal (see Figure 1).

Switching Waveforms


FIGURE 1. LVTTL to Differential LVPECL Propagation Delay

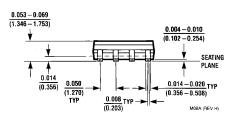
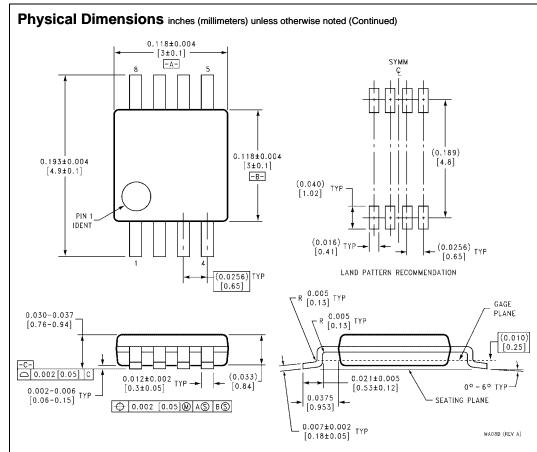


FIGURE 2. Differential Output Edge Rates


Physical Dimensions inches (millimeters) unless otherwise noted

8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M08A

8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide Package Number MA08D

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com