阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

4-channel BTL driver for CD players **BA6896FP**

The BA6896FP is a 4-channel BTL driver designed for CD player motor and actuator drives. The internal 5V regulator and standard operational amplifier make this IC suitable for a wide spectrum of applications.

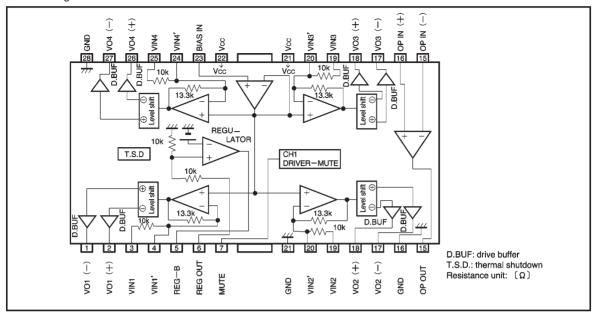
Applications

CD players, CD-ROM drives

Features

- HSOP 28-pin package, for application miniaturization.
- 2) A minimum of attached components.
- Driver gain is adjustable with a single attached resistor.
- Internal 5V regulator. (requires attached PNP transistor)
- 5) Internal standard operational amplifier.
- 6) Internal thermal shutdown function.
- 7) The output current between pins 1 and 2 is mutable with the external mute pin.

●Absolute maximum ratings (Ta = 25°C)


Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	1.7*	w
Operating temperature	Topr	−35~+85	င
Storage temperature	Tstg	−55∼ +150	°C

^{*} Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C. When mounted on a 50 \times 50 \times 1 mm paper phenol board.

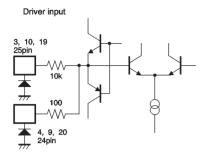
Operating supply voltage range: 6-14 V (5.5-14V when not using the regulator)

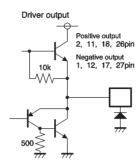
* Pins 5 and 6 may be left open when the regulator is not used.

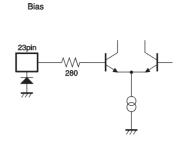
Block diagram

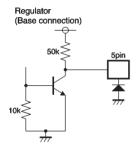
Pin descriptions

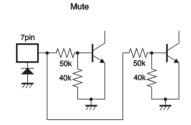
Pin No.	Pin name	Function		
1	VO1 (-)	Driver channel 1 negative output		
2	VO1 (+)	Driver channel 1 positive output		
3	VIN1	Driver channel 1 input		
4	VIN1'	Input for adjusting driver channel 1 gain		
5	REG-B	Connect to base of attached transistor		
6	REG OUT	Constant voltage output (connect to collector of attached transistor)		
7	MUTE	Mute control		
8	GND	Ground		
9	VIN2'	Input for adjusting driver channel 2 gain		
10	VIN2	Driver channel 2 input		
11	VO2 (+)	Driver channel 2 positive output		
12	VO2 (-)	Driver channel 2 negative output		
13	GND	Substrate ground		
14	OP OUT	Operational amplifier output		

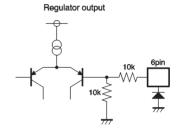

Pin No.	Pin name	Function		
15	OP IN (-)	Operational amplifier negative input		
16	OP IN (+)	Operational amplifier positive input		
17	VO3 (-)	Driver channel 3 negative output		
18	VO3 (+)	Driver channel 3 positive output		
19	VIN3	Driver channel 3 input		
20	VIN3'	Input for adjusting driver channel 3 gain		
21	Vcc	Vcc		
22	Vcc	Vcc		
23	BIAS IN	Bias amplifier input		
24	VIN4'	Input for adjusting driver channel 4 gain		
25	VIN4	Driver channel 4 input		
26	VO4 (+)	Driver channel 4 positive output		
27	VO4 (-)	Driver channel 4 negative output		
28	GND	Substrate ground		

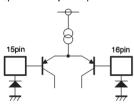

Note: Positive and negative output of the driver is relative to the polarity of the input pins.

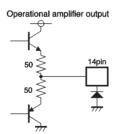

For example, when an input pin goes to the high level, the negative output pin goes to the low level and the positive output pin to the high level.




Pin equivalent circuit diagrams







Operational amplifier input

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 8V, f = 1kHz, RL = 8Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Quiescent current dissipation	lcc	6.0	10.0	14.0	mA	No load	
Output voltage, offset	Voo	-40	_	40	mV		
Maximum output amplitude	Vом	3.8	4.3	_	٧		
Closed loop voltage gain	Gvc	7.0	8.0	9.0	dB	V _{IN} =0.1V _{rms} ,1kHz	
Ripple rejection	RR	_	60	_	dB	V _{IN} =0.1V _{rms} ,100Hz	
Slew rate	SR	_	2.0	_	V/μs	100 kHz square wave, 3 V _{P-P} output	
MUTE ON voltage	VMON	2.2	_	_	V		
MUTE OFF voltage	VMOFF	_	_	0.4	V		
⟨5 V regulator⟩	⟨5 V regulator⟩						
Output voltage	Vreg	4.75	5.00	5.25	٧	IL=100mA	
Output load differential	△VRL	-50	0	10	mV	IL=0~200mA	
Power supply volt. differential	△Vvcc	-30	0	75	mV	(Vcc=6~14V) IL=100mA	
⟨Opeational amplifier⟩				•			
Offset voltage	Vofop	- 5	0	5	mV		
Input bias current	Vвор	_	_	300	nA		
Output high level voltage	Vонор	6.0	_	_	٧		
Output low level voltage	VOLOP	_	0.7	1.1	٧		
Output drive current (sink)	Isink	10	50	_	mA	50 Ω at Vcc	
Output drive current (source)	Isource	10	40	_	mA	50 Ω at GND	
Open loop voltage gain	Gvo	_	78	_	dB	V _{IN} =-75dBV,1kHz	
Slew rate	SRop	_	1	_	V/μs	100 kHz square wave, 4 V _{P-P} output	
Ripple rejection ratio	RRop	_	65	_	dB	V _{IN} =-20dBV,100Hz	
Common mode rejection ratio	CMRR	_	84	_	dB	V _{IN} =-20dBV,1kHz	

O Not designed for radiation resistance.

Measurement circuit

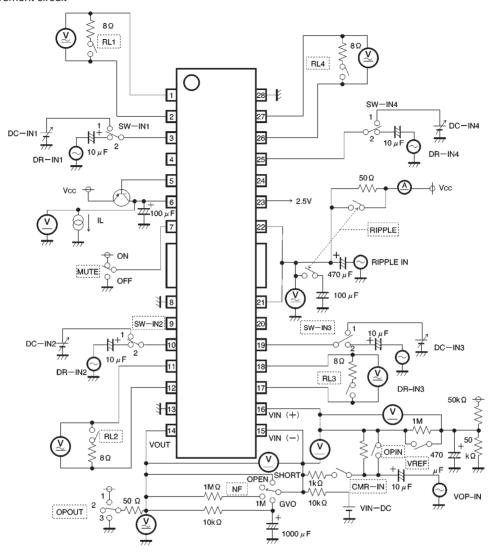


Fig.1

386

Circuit operation

(1) Driver

Inputs to the IC are the focus tracking error signal from the servo preamplifier and the control signal from the motor. The input signals, which normally center on 2.5V, are V / I converted by the preamplifier, generating a current corresponding to the input voltage. This current is

passed through a resistor and into the internal reference voltage component, the preamplifier output being a signal centering on the internal reference voltage. Two systems (positive phase and negative phase) are created during V / I conversion, generating BTL output via the driver buffer.

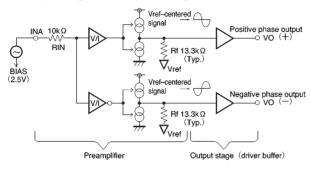


Fig.2

(2) Regulator

This is a typical series regulator that generates a reference voltage internally. A PNP low saturation transistor must be connected.

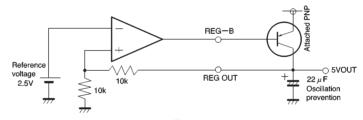
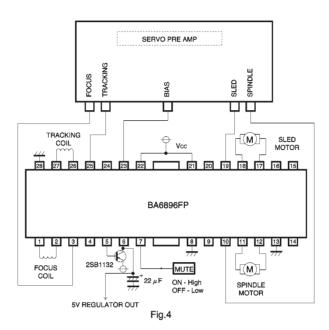
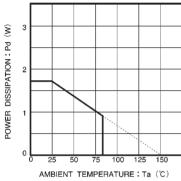
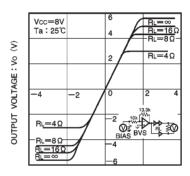



Fig.3

(3) Operational amplifier A standard 4558 type.


Application example


Operation notes

- (1) The BA6896FP has an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds 175°C (typically).
- (2) The output current can be muted be raising the mute pin (pin 7) voltage above 2.2V. Pin 7 should be open or pulled up above 0.4V during normal operation.
- (3) Muting also occurs when the bias pin (23 pin) drops below 1.4V (typically). Pin 23 should stay above 1.6V during normal operation.
- (4) The internal circuits turn off when the supply voltage drops below 4.5V (typically) and start up again when the supply voltage rises above 4.7V (typically).
- (5) Muting occurs during thermal shutdown, mute-on operations or a drop in the bias pin voltage or supply voltage. In each case, only the drivers are muted. During muting, the output pins remain at the internal bias voltage, roughly $(Vcc V_F) / 2$.
- (6) Attach a bypass capacitor (roughly $0.1\mu\text{F}$) to the power supply, at the base of the IC.
- (7) The radiating fin is connected to the package's internal GND, but should also be connected to an external ground.
- (8) The capacitor between regulator output (pin 6) and GND also serves to prevent oscillation of the IC, so select one with good temperature characteristics.

Thermal derating curve

Electrical characteristic curves

INPUT VOLTAGE: Vin (V)

Fig. 6 Driver I / O characteristics (variable load)

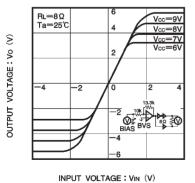


Fig. 7 Driver I / O characteristics (variable Vcc)

Fig. 8 Power supply voltage vs. output voltage (offset)

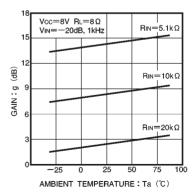


Fig. 9 Driver gain vs. temperature (RIN connected via gain adjustment pin)

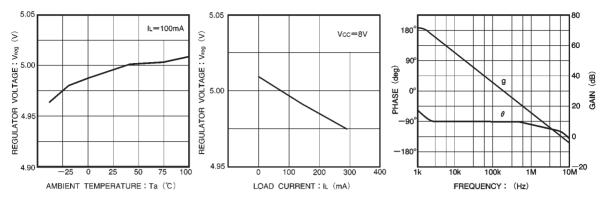
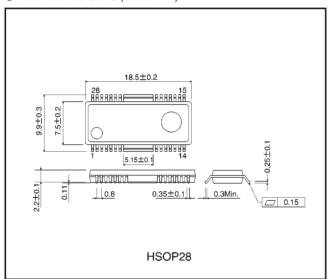



Fig. 10 Regulator voltage vs. temperature

Fig. 11 Load current vs. regulator voltage

Fig. 12 Operational amplifier vs. open loop

External dimensions (Units: mm)

