

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

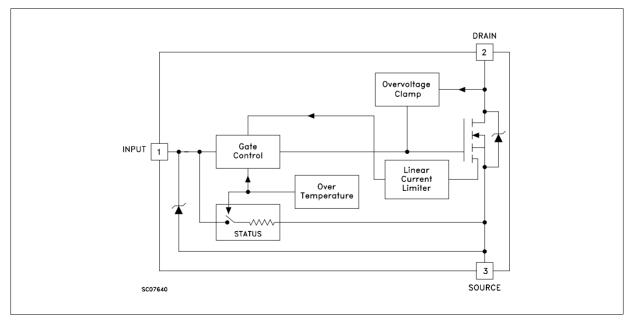
VNP28N04

"OMNIFET": FULLY AUTOPROTECTED POWER MOSFET

TYPE	V _{clamp}	R _{DS(on)}	l _{lim}
VNP28N04	42 V	0.035 Ω	28 A

- LINEAR CURRENT LIMITATION
- THERMAL SHUT DOWN
- SHORT CIRCUIT PROTECTION
- INTEGRATED CLAMP
- LOW CURRENT DRAWN FROM INPUT PIN
- DIAGNOSTIC FEEDBACK THROUGH INPUT PIN
- ESD PROTECTION
- DIRECT ACCESS TO THE GATE OF THE POWER MOSFET (ANALOG DRIVING)
- COMPATIBLE WITH STANDARD POWER MOSFET
- STANDARD TO-220 PACKAGE

DESCRIPTION


The VNP28N04 is a monolithic device made using SGS-THOMSON Vertical Intelligent Power M0 Technology, intended for replacement of standard power MOSFETS in DC to 50 KHz applications. Built-in thermal shut-down, linear

current limitation and overvoltage clamp protect the chip in harsh enviroments.

TO-220

Fault feedback can be detected by monitoring the voltage at the input pin.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{in} = 0)	Internally Clamped	V
Vin	Input Voltage	18	V
ID	Drain Current	Internally Limited	A
I _R	Reverse DC Output Current	-28	А
V_{esd}	Electrostatic Discharge (C= 100 pF, R=1.5 KΩ)	2000	V
Ptot	Total Dissipation at $T_c = 25 \ ^{\circ}C$	83	W
Tj	Operating Junction Temperature	Internally Limited	°C
Tc	Case Operating Temperature	Internally Limited	°C
T _{stg}	Storage Temperature	-55 to 150	°C

THERMAL DATA

R _{thj-case}	Thermal Resistance	Junction-case	Max	1.5	°C/W
R _{thj-amb}	Thermal Resistance	Junction-ambient	Max	62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 $^{\circ}$ C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vclamp	Drain-source Clamp Voltage	I _D = 200 mA V _{in} = 0	36	42	48	V
V _{CLTH}	Drain-source Clamp Threshold Voltage	$I_D = 2 \text{ mA}$ $V_{in} = 0$	35			V
VINCL	Input-Source Reverse Clamp Voltage	l _{in} = -1 mA	-1		-0.3	V
I _{DSS}	Zero Input Voltage Drain Current (V _{in} = 0)				50 200	μΑ μΑ
l _{ISS}	Supply Current from Input Pin	$V_{DS} = 0 V V_{in} = 10 V$		250	500	μA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IN(th)}	Input Threshold Voltage	$V_{DS} = V_{in}$ $I_D + I_in = 1 \text{ mA}$	0.8		3	V
$R_{DS(on)}$	Static Drain-source On Resistance	$V_{in} = 10 V$ $I_D = 14 A$ $V_{in} = 5 V$ $I_D = 14 A$			0.035 0.05	Ω Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V _{DS} = 13 V I _D = 14 A	14	18		S
Coss	Output Capacitance	$V_{DS} = 13 V f = 1 MHz V_{in} = 0$		700	900	pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING (**)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	$V_{DD} = 15 V$ $I_d = 14 A$		100	200	ns
tr	Rise Time	$V_{gen} = 10 V$ $R_{gen} = 10 \Omega$		330	600	ns
t _{d(off)}	Turn-off Delay Time	(see figure 3)		400	700	ns
t _f	Fall Time			155	300	ns
t _{d(on)}	Turn-on Delay Time	V _{DD} = 15 V I _d = 14 A		450	700	ns
tr	Rise Time	$V_{gen} = 10 V$ $R_{gen} = 1000 \Omega$		1.7	3	μs
t _{d(off)}	Turn-off Delay Time	(see figure 3)		7.5	10	μs
t _f	Fall Time			3.4	5	μs
(di/dt) _{on}	Turn-on Current Slope	$V_{DD} = 15 V \qquad I_D = 14 A$		35		A/μs
		$V_{in} = 10 V$ $R_{gen} = 10 \Omega$				
Qi	Total Input Charge	$V_{DD} = 12 \text{ V}$ $I_D = 10 \text{ A}$ $V_{in} = 10 \text{ V}$		60		nC

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{SD} (*)	Forward On Voltage	$I_{SD} = 14 \text{ A}$ $V_{in} = 0$			1.6	V
trr (**)	Reverse Recovery Time	$I_{SD} = 14 \text{ A}$ di/dt = 100 A/µs V _{DD} = 30 V $T_i = 25 ^{\circ}\text{C}$		180		ns
Q _{rr} (**)	Reverse Recovery Charge	(see test circuit, figure 5)		0.45		μC
I _{RRM} (**)	Reverse Recovery Current			7		A

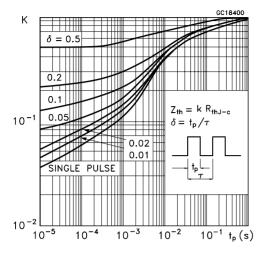
PROTECTION

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
l _{lim}	Drain Current Limit		20 20	28 28	40 40	A A
t _{dlim} (**)	Step Response Current Limit	V _{in} = 10 V V _{in} = 5 V		25 70	40 120	μs μs
T _{jsh} (**)	Overtemperature Shutdown		150			°C
T _{jrs} (**)	Overtemperature Reset		135			°C
l _{gf} (**)	Fault Sink Current			50 20		mA mA
E _{as} (**)	Single Pulse Avalanche Energy	starting T _j = 25 °C V _{DD} = 20 V V _{in} = 10 V R _{gen} = 1 K Ω L = 10 mH	2.5			J

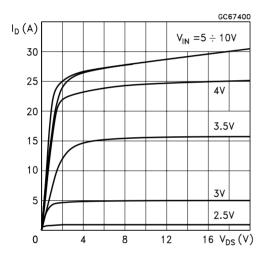
(*) Pulsed: Pulse duration = 300 $\mu s,$ duty cycle 1.5 % (**) Parameters guaranteed by design/characterization

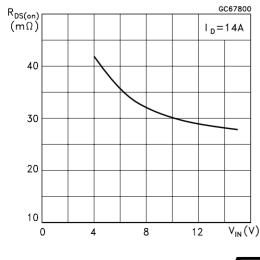
PROTECTION FEATURES

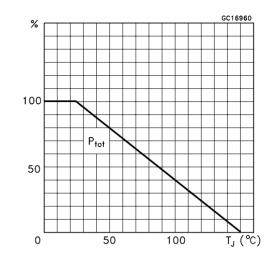
During normal operation, the Input pin is electrically connected to the gate of the internal power MOSFET. The device then behaves like a standard power MOSFET and can be used as a switch from DC to 50 KHz. The only difference from the user's standpoint is that a small DC current ($I_{\rm ISS}$) flows into the Input pin in order to supply the internal circuitry.

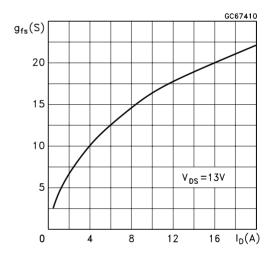

The device integrates:

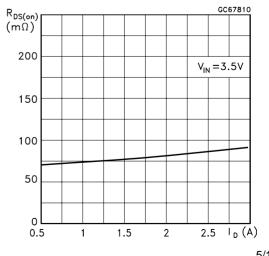
- OVERVOLTAGE CLAMP PROTECTION: internally set at 42V, along with the rugged avalanche characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductive loads.
- LINEAR CURRENT LIMITER CIRCUIT: limits the drain current ld to llim whatever the Input pin voltage. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the overtemperature threshold T_{jsh}.
- OVERTEMPERATURE AND SHORT CIRCUIT PROTECTION: these are based on sensing the chip temperature and are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction temperature. Overtemperature cutout occurs at minimum 150°C. The device is automatically restarted when the chip temperature falls below 135°C.
- STATUS FEEDBACK: In the case of an overtemperature fault condition, a Status Feedback is provided through the Input pin. The internal protection circuit disconnects the input from the gate and connects it instead to ground via an equivalent resistance of 100 Ω . The failure can be detected by monitoring the voltage at the Input pin, which will be close to ground potential.


Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL Logic circuit (with a small increase in R_{DS(on)}).

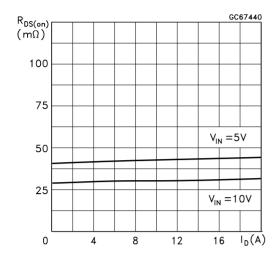

Thermal Impedance


Output Characteristics

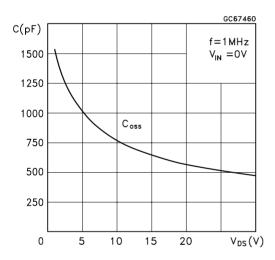

Static Drain-Source On Resistance vs Input Voltage


Derating Curve

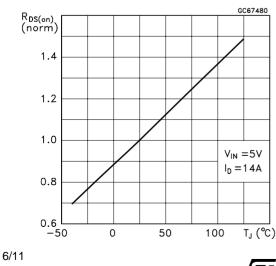
Transconductance



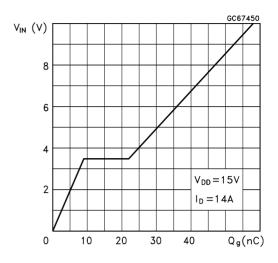
Static Drain-Source On Resistance

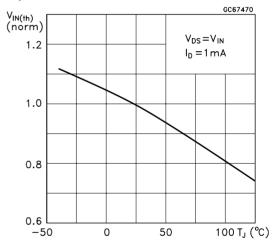


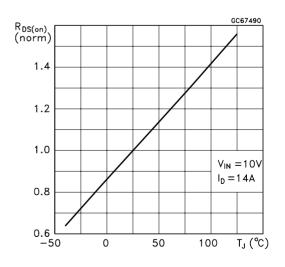
5/11



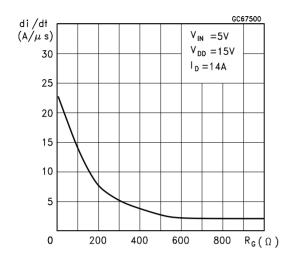
Static Drain-Source On Resistance


Capacitance Variations

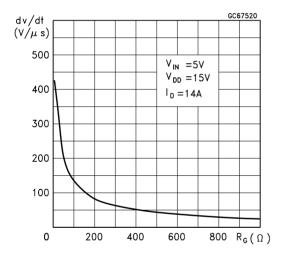



Input Charge vs Input Voltage

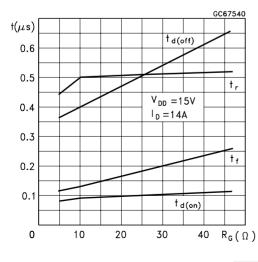
Normalized Input Threshold Voltage vs Temperature

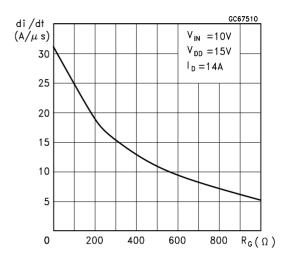


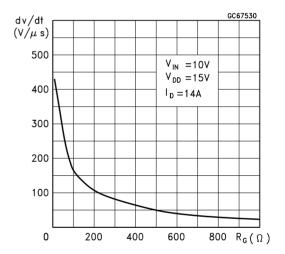
Normalized On Resistance vs Temperature

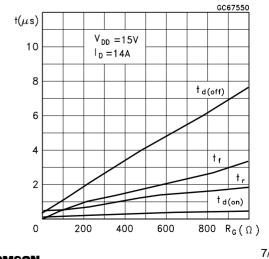


SGS-THOMSON MICROELECTRONICS

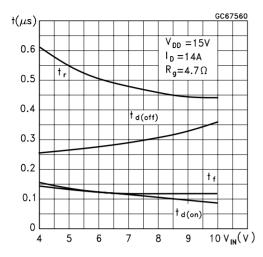

Turn-on Current Slope

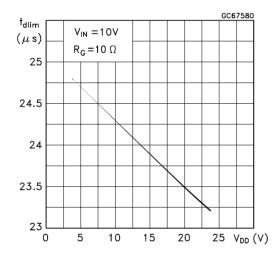

Turn-off Drain-Source Voltage Slope

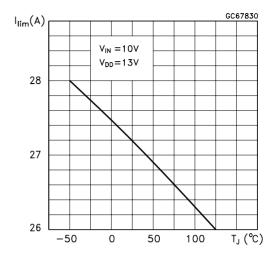

Switching Time Resistive Load

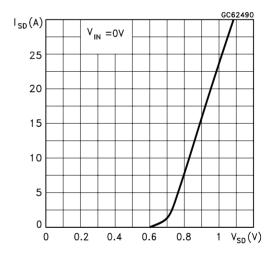

Turn-on Current Slope

Turn-off Drain-Source Voltage Slope






Switching Time Resistive Load


Step Response Current Limit

Current Limit vs Junction Temperature

Source Drain Diode Forward Characteristics

Fig. 1: Unclamped Inductive Load Test Circuits

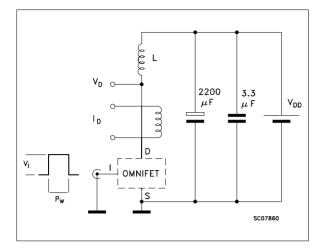
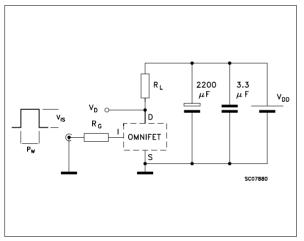
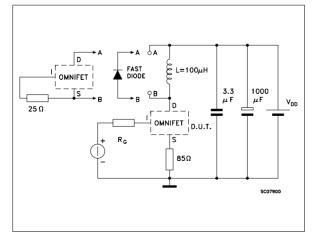




Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveforms

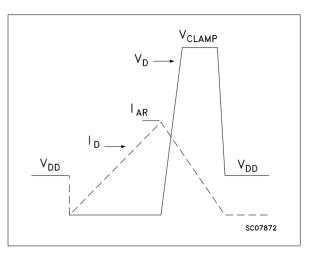
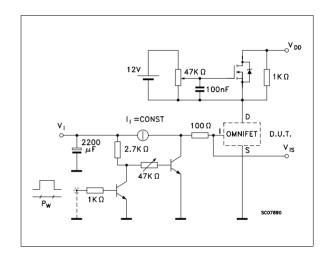
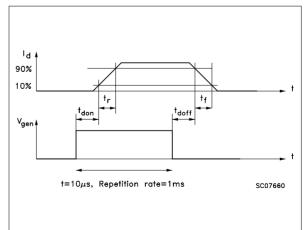
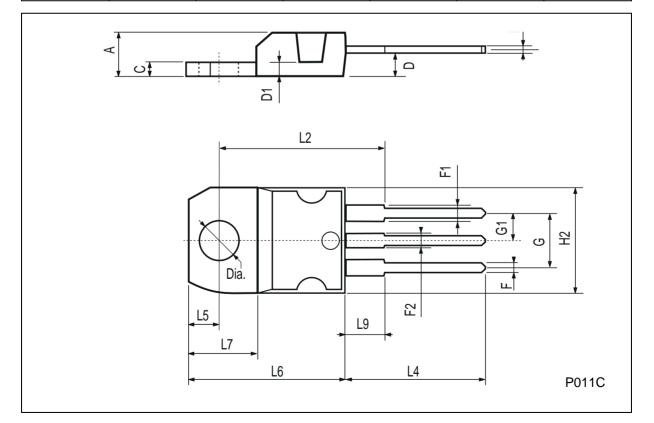


Fig. 4: Input Charge Test Circuit


Fig. 6: Waveforms

DIM.		mm		inch			
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.051	
D	2.40		2.72	0.094		0.107	
D1		1.27			0.050		
E	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.203	
G1	2.4		2.7	0.094		0.106	
H2	10.0		10.40	0.393		0.409	
L2		16.4			0.645		
L4	13.0		14.0	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.2		6.6	0.244		0.260	
L9	3.5		3.93	0.137		0.154	
DIA.	3.75		3.85	0.147		0.151	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1996 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

