## 阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

## Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

## Features

- Debounce time: 0.3 ms to 6 s
- RC oscillator determines switching characteristics
- Relay driver with Z-diode
- Debounced input for toggle switch
- Three debounced inputs: ON, OFF and TOGGLE
- Load-dump protection
- RF interference protection
- Protection according to ISO/TR7637-1 (VDE 0839)


## Description

The bipolar integrated circuit Atme ${ }^{\circledR}$ U6032B is designed as a toggle switch. The device, which has a defined power-on status, can be used to control electrical loads, for example, fog lamps, high/low beam or heated windows for automotive applications.

Figure 1. Block Diagram with External Circuit


## 1. Pin Configuration

Figure 1-1. Pinning DIP8


Table 1-1. Pin Description

| Pin | Symbol | Function |
| :---: | :---: | :--- |
| 1 | GND | Reference point, ground |
| 2 | RELAY | Relay control output |
| 3 | ON | Switch-on input |
| 4 | OFF | Switch-off input |
| 5 | TOGGLE | Toggle input |
| 6 | OSC | RC oscillator input |
| 7 | VSTAB | Stabilized voltage |
| 8 | VS | Supply voltage |

## 2. Functional Description

### 2.1 Power Supply, Pin 8

To achieve interference protection and surge immunity, the supply voltage (pin 8) must be provided with an RC circuit as shown in Figure 2-1. The dropping resistor, $R_{1}$, limits the current in case of overvoltage, whereas $C_{1}$ smooths the supply voltage at pin 8.

Recommended values are: $\mathrm{R}_{1}=510 \Omega, \mathrm{C}_{1}=47 \mu \mathrm{~F}$.
An integrated Z-diode (14V) protects the supply voltage, $\mathrm{V}_{\mathrm{S}}$, thus enabling stable operation in a supply-voltage range of 6 V to 16 V , supplied by $\mathrm{V}_{\text {Batt }}$.
It is possible to operate the integrated circuit with a 5 V supply, but it should be assured that there are no interference voltages. In this case, pin 7 is connected to pin 8 as shown in Figure 2-2 on page 4, and the $R_{1} C_{1}$ circuit is omitted.

Figure 2-1. Basic Circuit for 12-V Supply and Oscillator


Figure 2-2. Basic Circuit for $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$


### 2.2 Oscillator, Pin 6

The oscillator frequency, $f$, is determined mainly by the $R_{2} C_{2}$ circuit. The resistance, $R_{2}$, determines the charge time, and the integrated resistance ( $2 \mathrm{k} \Omega$ ) is responsible for the discharge time. To ensure the stability of the oscillator frequency, it is recommended that the selected $R_{2}$ value is remarkably greater than the internal resistance ( $2 \mathrm{k} \Omega$ ), as the temperature response and the tolerances of the integrated resistance are considerably greater than the external resistance value.
The oscillator frequency, f , is calculated as follows:
$\mathrm{f}=\frac{1}{\mathrm{t}_{1}+\mathrm{t}_{2}}$
where
$\mathrm{t}_{1}=$ charge time $=\alpha_{1} \times \mathrm{R}_{2} \times \mathrm{C}_{2}$
$\mathrm{t}_{2}=$ discharge time $=\alpha_{2} \times 2 \mathrm{k} \Omega \times \mathrm{C}_{2}$
$\alpha_{1}$ and $\alpha_{2}$ are constants, e.g.:
$\alpha_{1}=0.833$ and $\alpha_{2}=1.551$ when $\mathrm{C}_{2}=470 \mathrm{pF}$ to 10 nF
$\alpha_{1}=0.746$ and $\alpha_{2}=1.284$ when $C_{2}=10 \mathrm{nF}$ to 4700 nF
The debounce time, $t_{3}$, depends on the oscillator frequency, $f$, as follows:
$t_{3}=6 \times \frac{1}{t}$
Table 5-1 on page 8 shows the relationship between $t_{3}, C_{2}, R_{2}$ and frequencies from 1 Hz to 20 kHz .

### 2.3 Relay-control Output

The relay-control output is an open-collector Darlington circuit with an integrated 23-V Z-diode for limiting the inductive cut-off pulse of the relay coil. The maximum static collector current must not exceed 300 mA and the saturation voltage is typically 1.1 V at 200 mA .

### 2.4 Interference Voltages and Load Dump

The IC supply is protected by $R_{1}, C_{1}$, and an integrated $Z$-diode, while the inputs are protected by a series resistor, integrated $Z$ diode and RF capacitor (refer to Figure 2-4 on page 6).
The relay-control output is protected by the integrated 23 V Z-diode in case of short interference peaks. It is switched to conductive condition for a battery voltage greater than 40 V in case of load dump. The output transistor is dimensioned so that it can withstand the generated current.

### 2.5 Power-on Reset

When the operating voltage is switched on, an internal power-on reset pulse (POR) is generated which sets the logic of the circuits to a defined initial condition. The relay output is disabled.

### 2.6 Relay-control Output Behavior, Pin 2

The time functions (relay output) can be started or interrupted by the three inputs ON, OFF or TOGGLE (pins 3,4 and 5 , input circuit of these pins see Figure 2-4 on page 6).
The relay becomes active if the time function is triggered, and the relay contact is interrupted after the elapse of the delay time, $\mathrm{t}_{\mathrm{d}}$. There are two input possibilities.

### 2.7 Toggle Input, Pin 5

When the push-button (TOGGLE) switch, $S_{1}$, is pressed for the first time, the relay becomes active after the debounce time, $t_{3}$, i.e., the relay output, pin 2 , is active.

Repeated operation of $S_{1}$ causes the interruption of the relay contact, thus disabling the relay. Each operation of the toggle switch, $S_{1}$, changes (alters) the condition of the relay output when the debounce time, $t_{d}$, is exceeded, i.e., the TOGGLE function.

If the relay output is not disabled by pressing the switch $\mathrm{S}_{1}$, the output stays active.
Figure 2-3. TOGGLE Function


### 2.8 ON, OFF Inputs, Pins 3 and 4

To avoid simultaneous operation of both inputs, pin 3 (ON) and pin 4 (OFF), the use of a two-way contact with centre-off position with spring returns (also known as rocker-actuated switch) is recommended.

Pressing the push-button switch (pin 3 ON ) leads to an activation of the relay after the debounce time, $\mathrm{t}_{3}$, has elapsed whereas the switching of pin 4 switch correspondingly leads to the de-energization of the relay. If the relay is not de-energized by the push-button switch, the output remains active.
Combined operation "TOGGLE" and "ON/OFF" is not possible due to the fact that there is only one debouncing circuit. Debouncing is possible in both modes, i.e., whenever $S_{1}$ is $O N$ or OFF.
Figure 2-4 shows the input circuit of Atmel ${ }^{\circledR}$ U6032B. It has an integrated pull-down resistor (20k $\Omega$ ), RF capacitor (15pF) and Z-diode ( 7 V ). It reacts to voltages greater than 2 V . The external protective resistor has a value of $20 \mathrm{k} \Omega$ and the push-button switch, S , is connected to the battery as shown in the diagram.
The contact current, I, is calculated as follows:
$\mathrm{I}=\frac{\mathrm{V}_{\text {Batt }}-\mathrm{V}_{\mathrm{Z}}}{\mathrm{R}(=20 \mathrm{k} \Omega)}$ where $\mathrm{V}_{\text {Batt }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z}}=7 \mathrm{~V}$
$\mathrm{I}=\frac{(12-7) \mathrm{V}}{20 \mathrm{k} \Omega} \approx 0.25 \mathrm{~mA}$
It can be increased by connecting a $5.6 \mathrm{k} \Omega$ resistor from the push-button switch to ground as shown in Figure 2-6 on page 7.
Figure 2-4. Input Circuit


Figure 2-5. ON/OFF Function


Figure 2-6. Increasing the Contact Current by Parallel Resistors


## 3. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| Parameters | Symbol | Value | Unit |
| :--- | :---: | :---: | :---: |
| Operating voltage, static, 5 minutes | $\mathrm{V}_{\text {Batt }}$ | 24 | V |
| Ambient temperature range | $\mathrm{T}_{\text {amb }}$ | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature range | $\mathrm{T}_{\text {stg }}$ | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |
| Junction temperature | $\mathrm{T}_{\mathrm{j}}$ | 150 | ${ }^{\circ} \mathrm{C}$ |

## 4. Thermal Resistance

| Parameters | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: |
| Junction ambient | DIP8 | $\mathrm{T}_{\text {thJA }}$ | 110 |

## 5. Electrical Characteristics

$\mathrm{V}_{\text {Batt }}=13.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, reference point ground, Figure 1 on page 2, unless otherwise specified

| Parameters | Test Conditions | Pin | Symbol | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating voltage | $\begin{aligned} & R_{1} \geq 510 \Omega \\ & t<5 \min \\ & t<60 \text { min } \end{aligned}$ |  | $V_{\text {Batt }}$ | 6 |  | $\begin{aligned} & 16 \\ & 24 \\ & 18 \end{aligned}$ | V |
| 5 V supply | Without $\mathrm{R}_{1}, \mathrm{C}_{1}$ | 7, 8 | $\mathrm{V}_{8}, \mathrm{~V}_{7}$ | 4.3 |  | 6.0 | V |
| Stabilized voltage | $V_{\text {Batt }}=12 \mathrm{~V}$ | 7 | $V_{7}$ | 5.0 | 5.2 | 5.4 | V |
| Undervoltage threshold | Power-on reset |  | $\mathrm{V}_{\text {S }}$ | 3.0 |  | 4.2 | V |
| Supply current | All push buttons open | 8 | $\mathrm{I}_{s}$ |  | 1.3 | 2.0 | mA |
| Internal Z-diode | $\mathrm{I}_{8}=10 \mathrm{~mA}$ | 8 | $\mathrm{V}_{\mathrm{z}}$ | 13.5 | 14 | 16 | V |
| Relay Control Output |  | 2 |  |  |  |  |  |
| Saturation voltage | $\begin{aligned} & \mathrm{I}_{2}=200 \mathrm{~mA} \\ & \mathrm{I}_{2}=300 \mathrm{~mA} \end{aligned}$ |  | $V_{2}$ |  | 1.2 | 1.5 | V |
| Leakage current | $\mathrm{V}_{2}=14 \mathrm{~V}$ |  | $\mathrm{I}_{\mathrm{kg}}$ |  | 2 | 100 | $\mu \mathrm{A}$ |
| Output current |  |  | $\mathrm{I}_{2}$ |  |  | 300 | mA |
| Output Pulse Current |  |  |  |  |  |  |  |
| Load-dump pulse | $\mathrm{t} \leq 300 \mathrm{~ms}$ |  | $\mathrm{I}_{2}$ |  |  | 1.5 | A |
| Internal Z-diode | $\mathrm{I}_{2}=10 \mathrm{~mA}$ |  | $\mathrm{V}_{\mathrm{z}}$ | 20 | 22 | 24 | V |
| Oscillator Input | $\begin{aligned} & \mathrm{f}=0.001 \text { to } 40 \mathrm{kHz} \text {, } \\ & \text { see Table } 5-1 \end{aligned}$ | 6 |  |  |  |  |  |
| Internal discharge resistance | $\mathrm{V}_{6}=5 \mathrm{~V}$ |  | $\mathrm{R}_{6}$ | 1.6 | 2.0 | 2.4 | $\mathrm{k} \Omega$ |
| Switching thresholds | Lower Upper |  | $\begin{aligned} & V_{6 L} \\ & V_{6 H} \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 2.8 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 3.1 \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 3.5 \end{aligned}$ | V |
| Input current | $V_{6}=0 \mathrm{~V}$ |  | $-I_{6}$ |  |  | 1 | $\mu \mathrm{A}$ |
| Switching Times |  |  |  |  |  |  |  |
| Debounce time |  |  | $\mathrm{t}_{3}$ | 5 |  | 7 | Cycles |
| Inputs ON, OFF, TOGGLE |  | 3,4,5 |  |  |  |  |  |
| Switching threshold voltage |  |  | $V_{3,4,5}$ | 1.6 | 2.0 | 2.4 | V |
| Internal Z-diode | $\mathrm{I}_{3,4,5}=10 \mathrm{~mA}$ |  | $V_{3,4,5}$ | 6.5 | 7.1 | 8.0 | V |
| Pull-down resistance | $\mathrm{V}_{3,4,5}=5 \mathrm{~V}$ |  | $\mathrm{R}_{3,4,5}$ | 13 | 20 | 50 | $\mathrm{k} \Omega$ |

Table 5-1. Values for $C_{2}$ and $R_{2}$ for a Given Oscillator Frequency and Debounce Time

| Frequency $\mathbf{f}(\mathbf{H z})$ | Debounce Time $\mathbf{t}_{\mathbf{3}}(\mathbf{m s})$ | $\mathbf{C}_{\mathbf{2}}(\mathbf{n F})$ | $\mathbf{R}_{\mathbf{2}}(\mathbf{k} \mathbf{)})$ |
| :---: | :---: | :---: | :---: |
| 1 | 6000 | 4700 | 280 |
| 2 | 3000 | 1000 | 650 |
| 3 | 2000 | 1000 | 440 |
| 4 | 1500 | 1000 | 330 |
| 6 | 1200 | 1000 | 260 |
| 7 | 1000 | 1000 | 220 |
| 9 | 857 | 1000 | 190 |
| 10 | 750 | 1000 | 160 |

Table 5-1. Values for $\mathrm{C}_{2}$ and $\mathrm{R}_{2}$ for a Given Oscillator Frequency and Debounce Time (Continued)

| Frequency f (Hz) | Debounce Time $\mathrm{t}_{3}(\mathrm{~ms})$ | $\mathrm{C}_{2}(\mathrm{nF})$ | $\mathrm{R}_{2}\left(\mathrm{k} \Omega^{\prime}\right)$ |
| :---: | :---: | :---: | :---: |
| 20 | 300 | 100 | 650 |
| 30 | 200 | 100 | 440 |
| 40 | 150 | 100 | 330 |
| 50 | 120 | 100 | 260 |
| 60 | 100 | 100 | 220 |
| 70 | 86 | 100 | 190 |
| 80 | 75 | 100 | 160 |
| 90 | 67 | 100 | 140 |
| 100 | 60 | 100 | 130 |
| 200 | 30 | 10 | 600 |
| 300 | 20 | 10 | 400 |
| 400 | 15 | 10 | 300 |
| 500 | 12 | 10 | 240 |
| 600 | 10 | 10 | 200 |
| 700 | 9.00 | 10 | 170 |
| 800 | 8.00 | 10 | 150 |
| 900 | 7.00 | 10 | 130 |
| 1000 | 6.00 | 10 | 120 |
| 2000 | 3.00 | 1 | 600 |
| 3000 | 2.00 | 1 | 400 |
| 4000 | 1.50 | 1 | 300 |
| 5000 | 1.20 | 1 | 240 |
| 6000 | 1.00 | 1 | 200 |
| 7000 | 0.86 | 1 | 170 |
| 8000 | 0.75 | 1 | 150 |
| 9000 | 0.67 | 1 | 130 |
| 10000 | 0.60 | 1 | 120 |
| 11000 | 0.55 | 1 | 110 |
| 12000 | 0.50 | 1 | 99 |
| 13000 | 0.46 | 1 | 91 |
| 14000 | 0.43 | 1 | 85 |
| 15000 | 0.40 | 1 | 79 |
| 16000 | 0.38 | 1 | 74 |
| 17000 | 0.35 | 1 | 70 |
| 18000 | 0.33 | 1 | 66 |
| 19000 | 0.32 | 1 | 62 |
| 20000 | 0.30 | 1 | 59 |

## 6. Ordering Information

| Extended Type Number | Package | Remarks |
| :--- | :---: | :--- |
| U6032B-MY | DIP8 | Pb-free |

## 7. Package Information

Figure 7-1. DIP8
Package: DIP8
Dimensions in mm


technical drawings according to DIN specifications

Drawing-No.: 6.543-5040.01-4
Issue: 1; 16.01.02

## 8. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document.

| Revision No. | History |
| :--- | :--- |
|  | - Section 4 "Thermal Resistance" on page 7 changed |
| 4771C-AUTO-06/12 | - Section 7 "Ordering Information" on page 10 changed |
|  | - Section 8 "Package Information" on page 10 changed |
| 4771B-AUTO-11/05 | - First page: Pb-free logo added |
|  | - Page 10: Ordering Information changed |


| Atmel Corporation | Atmel Asia Limited |
| :--- | :--- |
| 2325 Orchard Parkway | Unit 01-5 \& 16, 19F |
| San Jose, CA 95131 | BEA Tower, Millennium City 5 |
| USA | 418 Kwun Tong Roa |
| Tel: $(+1)(408) 441-0311$ | Kwun Tong, Kowloon |
| Fax: $(+1)(408) 487-2600$ | HONG KONG |
| www.atmel.com | Tel: $(+852)$ 2245-6100 |
|  | Fax: $(+852) 2722-1369$ |

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Building 1-6-4 Osaki Shinagawa-ku, Tokyo 141-0032 JAPAN
Tel: (+81) (3) 6417-0300
Fax: (+81) (3) 6417-0370

Atme ${ }^{\circledR}$, Atmel logo and combinations thereof, Enabling Unlimited Possibilities ${ }^{\circledR}$, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

