

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

8-Bit Serial-Input DMOS Power Driver

LAST TIME BUY. T obsolete and notice h restricted to existing purchased for new de	ction but has been determined to be This classification indicates that the product is as been given. Sale of this device is currently customer applications. The device should not be esign applications because of obsolescence in the are no longer available.
Date of status change	e: May 3, 2010
Deadline for receipt	of LAST TIME BUY orders: October 29, 2010
Recommended S	ubstitutions:
For existing custome cations, contact Alleg	r transition, and for new customers or new appli- gro Sales.
	information on purchasing options, contact your plications engineer or sales representative.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

8-Bit Serial-Input DMOS Power Driver

Features and Benefits

- 50 V minimum output clamp voltage
- 150 mA output current (all outputs simultaneously)
- 5 Ω typical $r_{DS(on)}$
- Low power consumption
- Replacement for TPIC6B595N and TPIC6B595DW

Packages:

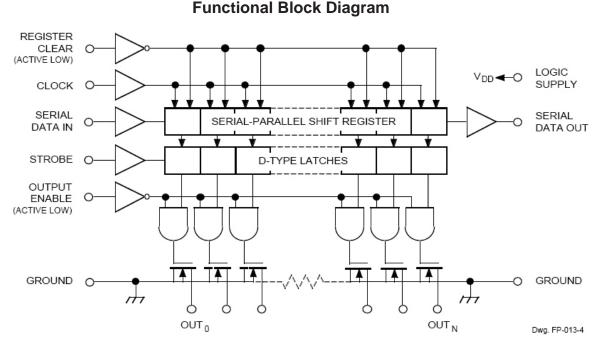
20-pin SOICW

(LW package)

18-pin DIP (A package)

kage)

Description


The A6B595 combines an 8-bit CMOS shift register and accompanying data latches, control circuitry, and DMOS power driver outputs. Power driver applications include relays, solenoids, and other medium-current or high-voltage peripheral power loads.

The serial-data input, CMOS shift register and latches allow direct interfacing with microprocessor-based systems. Serial-data input rates are over 5 MHz. Use with TTL may require appropriate pull-up resistors to ensure an input logic high.

A CMOS serial-data output enables cascade connections in applications requiring additional drive lines. Similar devices with reduced $r_{DS(on)}$ are available as the A6595.

The A6B595 DMOS open-drain outputs are capable of sinking up to 500 mA. All of the output drivers are disabled (the DMOS sink drivers turned off) by the OUTPUT ENABLE input high. Copper lead frames, reduced supply current requirements, and low on-state resistance allow both devices to sink 150 mA from all outputs continuously, to ambient temperatures over 85°C.

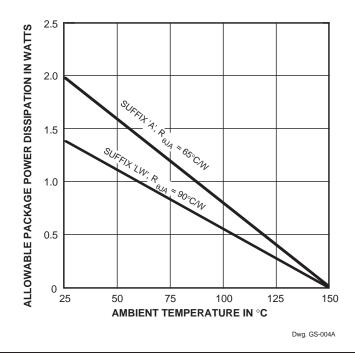
The A6B595 is furnished in a 20-pin dual in-line plastic package and a 20-pin wide-body, small-outline plastic package (SOICW) with gull-wing leads. The Pb (lead) free versions (suffix -T) have 100% matte tin leadframe plating.

Grounds (terminals 10, 11, and 19) must be connected together externally.

Selection Guide

Part Number	Package	Packing
A6B595KA-T	18-pin DIP	18 pieces per tube
A6B595KLWTR-T	20-pin SOICW	1000 pieces per reel

Absolute Maximum Ratings

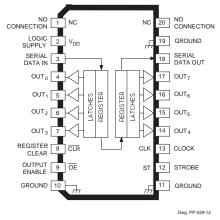

Characteristic	Symbol	Notes	Rating	Units
Logic Supply Voltage	V _{DD}		7	V
Output Voltage	Vo		50	V
Input Voltage Range	VI		-0.3 to 7.0	V
Output Drain Current	Ι _ο	Continuous; each output, all outputs on	150	mA
Output Drain Current	I _{OM}	Peak; pulse duration 100 µs, duty cycle 2%	500	mA
Single-Pulse Avalanche Energy	E _{AS}		30	mJ
Operating Ambient Temperature	T _A	Range K	-40 to 85	°C
Maximum Junction Temperature	T _J (max)		150	°C
Storage Temperature	T _{stg}		-65 to 150	°C

Caution: These CMOS devices have input static protection (Class 3) but are still susceptible to damage if exposed to extremely high static electrical charges.

Thermal Characteristics

Characteristic	Symbol	Test Conditions*	Value	Units
Package Thermal Resistance		Package A, 1-layer PCB with copper limited to solder pads	65	°C/W
Fackage memai resistance	R _{0JA}	Package LW, 1-layer PCB with copper limited to solder pads	90	°C/W

*Additional thermal information available on the Allegro website



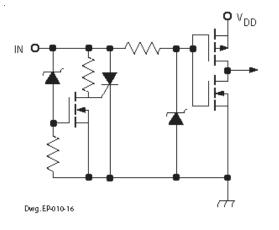
A6B595

8-Bit Serial-Input DMOS Power Driver

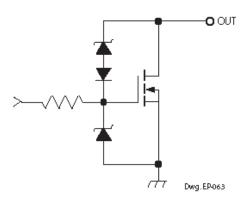
PIN-OUT DIAGRAM

Note that the A package (DIP) and the LW package (SOIC) are electrically identical and share a common terminal number assignment.

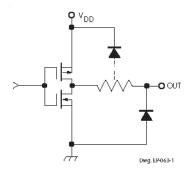
TERMINAL DESCRIPTIONS


Terminal No.	Terminal Name	Function
1	NC	No internal connection.
2	LOGIC SUPPLY	(V _{DD}) The logic supply voltage (typically 5 V).
3	SERIAL DATA IN	Serial-data input to the shift-register.
4-7	OUT ₀₋₃	Current-sinking, open-drain DMOS output terminals.
8	CLEAR	When (active) low, the registers are cleared (set low).
9	OUTPUT ENABLE	When (active) low, the output drivers are enabled; when high, all output drivers are turned OFF (blanked).
10	GROUND	Reference terminal for output voltage measurements (OUT ₀₋₃).
11	GROUND	Reference terminal for output voltage measurements (OUT ₀₋₇).
12	STROBE	Data strobe input terminal; shift register data is latched on rising edge.
13	CLOCK	Clock input terminal for data shift on rising edge.
14-17	OUT ₄₋₇	Current-sinking, open-drain DMOS output terminals.
18	SERIAL DATA OUT	CMOS serial-data output to the following shift register.
19	GROUND	Reference terminal for input voltage measurements.
20	NC	No internal connection.

NOTE — Grounds (terminals 10, 11, and 19) must be connected together externally.



A6B595


LOGIC INPUTS

DMOS POWER DRIVER OUTPUT

SERIAL DATA OUT

RECOMMENDED OPERATING CONDITIONS

over operating temperature range

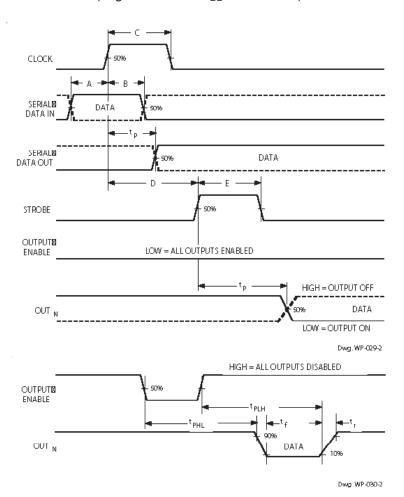
Logic Supply Voltage Range, V _{DD} 4.4	5 V to 5.5 V
High-Level Input Voltage, VIH	$\geq 0.85V_{DD}$
Low-level input voltage, V _{IL}	. ≤ 0.15V _{DD}

Data	Clock	S	hift F	Regis	ter C	onter	nts	Serial Data			Lat	ch Co	onten	ts		Output		Out	put C	Conte	nts	
Input	Input	I ₀	I ₁	l ₂		I ₆	I ₇	Output	Strobe	I ₀	I ₁	l ₂		I ₆	I ₇	Enable	I ₀	I ₁	l ₂		I ₆	I ₇
н		Н	R_0	R_1		R_5	R_6	R ₆														
L		L	R_0	R_1		R_5	R_6	R ₆														
х	l	R_0	R_1	R_2		R_6	R ₇	R ₇														
		Х	Х	Х		Х	Х	Х	_	R ₀	R_1	R_2		R_6	R ₇							
		P ₀	P ₁	P_2		P_6	P ₇	P ₇	Г	P ₀	P ₁	P_2		P_6	P ₇	L	P ₀	P ₁	P_2		P_6	P ₇
										Х	Х	Х		Х	Х	н	Н	Н	Н		Н	Н

TRUTH TABLE

L = Low Logic Level H = High Logic Level X = Irrelevant P = Present State R = Previous State

4


ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}C$, $V_{DD} = 5 V$, $t_{ir} = t_{if}$ 10 ns (unless otherwise specified).

			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Output Breakdown Voltage	V _{(BR)DSX}	I _O = 1 mA	50	_	—	V
Off-State Output Current	I _{DSX}	V _O = 40 V, V _{DD} = 5.5 V		0.1	5.0	μA
ouncil		V _O = 40 V, V _{DD} = 5.5 V, T _A = 125°C		0.15	8.0	μA
Static Drain-Source On-State Resistance	r _{DS(on)}	I _O = 100 mA, V _{DD} = 4.5 V		4.2	5.7	Ω
		I _O = 100 mA, V _{DD} = 4.5 V, T _A = 125°C		6.8	9.5	Ω
		I _O = 350 mA, V _{DD} = 4.5 V (see note)		5.5	8.0	Ω
Nominal Output Current	I _{ON}	V _{DS(on)} = 0.5 V, T _A = 85°C	—	90	_	mA
Logic Input Current	IIH	$V_{I} = V_{DD} = 5.5 V$		_	1.0	μΑ
	I	V _I = 0, V _{DD} = 5.5 V		_	-1.0	μA
SERIAL-DATA Output Voltage	V _{OH}	I _{OH} = -20 μA, V _{DD} = 4.5 V	4.4	4.49	_	V
Output voltage		I _{OH} = -4 mA, V _{DD} = 4.5 V	4.0	4.2	_	V
	V _{OL}	I _{OL} = 20 μA, V _{DD} = 4.5 V		0.005	0.1	V
		I _{OL} = 4 mA, V _{DD} = 4.5 V	_	0.3	0.5	V
Prop. Delay Time	t _{PLH}	I _O = 100 mA, C _L = 30 pF		150	_	ns
	t _{PHL}	I _O = 100 mA, C _L = 30 pF	_	90	_	ns
Output Rise Time	t _r	I _O = 100 mA, C _L = 30 pF		200		ns
Output Fall Time	t _f	I _O = 100 mA, C _L = 30 pF		200		ns
Supply Current	I _{DD(OFF)}	V _{DD} = 5.5 V, Outputs OFF		20	100	μA
	I _{DD(ON)}	V _{DD} = 5.5 V, Outputs ON		150	300	μA
	I _{DD(fclk)}	f_{clk} = 5 MHz, C _L = 30 pF, Outputs OFF		0.4	5.0	mA

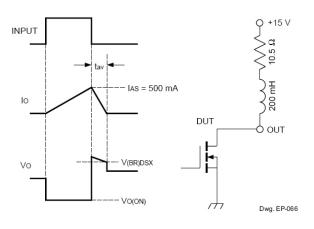
Typical Data is at $V_{DD} = 5$ V and is for design information only.

NOTE — Pulse test, duration 100 µs, duty cycle 2%.

TIMING REQUIREMENTS and SPECIFICATIONS

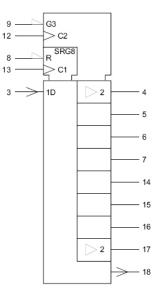
(Logic Levels are V_{DD} and Ground)

A. Data Active Time Before Clock Pulse	
(Data Set-Up Time), t _{su(D)}	20 ns
B. Data Active Time After Clock Pulse	
(Data Hold Time), t _{h(D)}	20 ns
C. Clock Pulse Width, t _{w(CLK)}	
D. Time Between Clock Activation	
and Strobe, t _{su(ST)}	50 ns
E. Strobe Pulse Width, t _{w(ST)}	50 ns
F. Output Enable Pulse Width, $t_{w(OE)}$ 4	4.5 µs
NOTE – Timing is representative of a 12.5 MHz clock.	


Serial data present at the input is transferred to the shift register on the rising edge of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT.

Information present at any register is transferred to the respective latch on the rising edge of the STROBE input pulse (serial-to-parallel conversion).

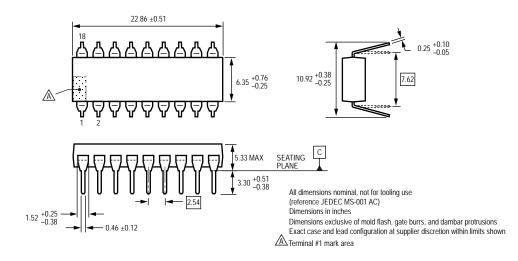
When the OUTPUT ENABLE input is high, the output source drivers are disabled (OFF). The information stored in the latches is not affected by the OUTPUT ENABLE input. With the OUTPUT ENABLE input low, the outputs are controlled by the state of their respective latches.


TEST CIRCUITS

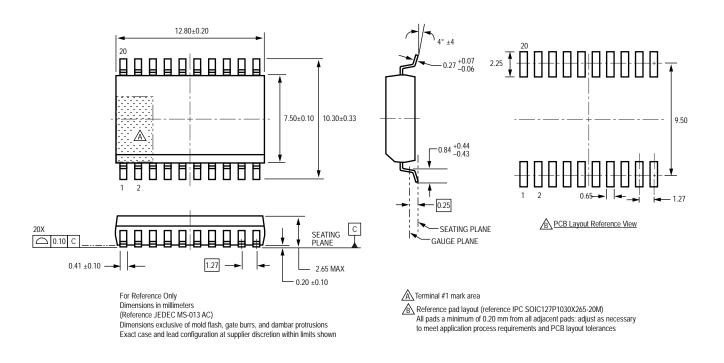
 $E_{AS} = I_{AS} \times V_{(BR)DSX} \times t_{AV}/2$

Single-Pulse Avalanche Energy Test Circuit and Waveforms

LOGIC SYMBOL



Dwg. FP-043



8-Bit Serial-Input DMOS Power Driver

Package A, 18-Pin DIP

Package LW, 20-Pin SOICW

Copyright ©1999-2009, Allegro MicroSystems, Inc.

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website: www.allegromicro.com

