

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

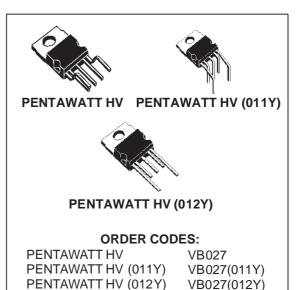
Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

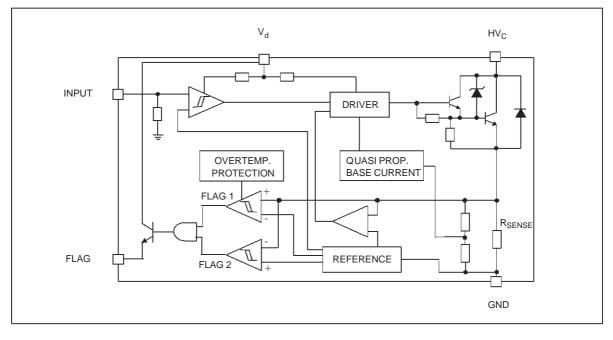
2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".


VB027 VB027(011Y) / VB027(012Y) HIGH VOLTAGE IGNITION COIL DRIVER POWER I.C.

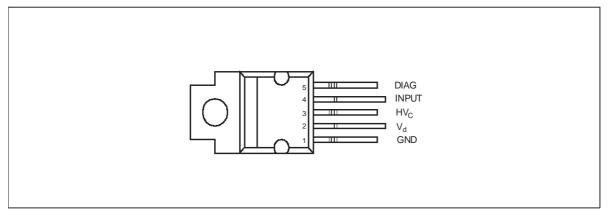
TYPE	V _{cl(min)}	I _{cl(max)}	I _{d(on)max}
VB027			
VB027(011Y)	300V	9A	130mA
VB027(012Y)			


- PRIMARY COIL VOLTAGE INTERNALLY SET
- COIL CURRENT LIMIT INTERNALLY SET
- LOGIC LEVEL COMPATIBLE INPUT
- DRIVING CURRENT QUASI PROPORTIONAL TO COLLECTOR CURRENT
- DOUBLE FLAG-ON COIL CURRENT

DESCRIPTION

The VB027, VB027(011Y), VB027(012Y) is a high voltage power integrated circuit made using the STMicroelectronics VIPower[™] technology, with vertical current flow power darlington and logic level compatible driving circuit. Built-in protection circuit for coil current limiting and collector voltage clamping allows the device to be used as smart, high voltage, high current interface in advanced electronic ignition system.

BLOCK DIAGRAM


ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit	
HVc	Collector voltage	Internally limited	V	
Ι _C	Collector current	Internally limited	A	
V _d	Driving stage supply voltage	7	V	
I _d	Driving circuitry supply current	200	mA	
V _{IN}	Input voltage	10	V	
Тj	Junction operating temperature	-40 to 150	°C	
T _{stg}	Storage temperature	-55 to 150	°C	

THERMAL DATA

Symbol	ymbol Parameter		Value	Unit	
R _{thj-case}	Thermal resistance junction-case	(MAX)	1.12	°C/W	
R _{thj-amb}	Thermal resistance junction-ambient	(MAX)	62.5	°C/W	

CONNECTION DIAGRAM (TOP VIEW)

PIN FUNCTION (PENTAWATT HV)

No	Name	Function
1	GND	Emitter power ground
2	V _d	Driving stage supply voltage
3	HV _C	Primary coil output signal
4	INPUT	Logic input channel
5	DIAG	Diagnostic output signal

57

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{cl}	High voltage clamp	-40°C≤Tj≤125°C; I _C =6A	300	360	400	V
V _{cg(sat)}	Power stage saturation voltage	I _C =6A; V _{IN} =4V		1.5		V
V _{cg(sat)td}	Power stage saturation voltage derating in temperature	I _C =6A; V _{IN} =4V; -40°C≤T _j ≤125°C			2	V
I _{d(off)}	Power-off supply current	V _{IN} =0.4V			10	mA
I _{d(on)}	Power-on supply current	V _{IN} =4V; I _C =6A; -40°C≤T _j ≤125°C			130	mA
V _d	Driving stage supply voltage		4.5		5.5	V
I _{cl}	Collector current limit	V _{IN} =4V (See note 1)	8	8.5	9	A
I _{cl(td)}	Collector current limit drift with temperature	See figure 3				
V _{INH}	High level input voltage		4		5.5	V
V _{INL}	Low level input voltage		0		0.8	V
I _{INH}	High level input current	V _{IN} =4V			200	μΑ
V _{diagH}	High level diagnostic output voltage	$R_{EXT}=22K\Omega$ (See figure 1)	3.5	(*)	V _d	V
V _{diagL}	Low level diagnostic output voltage	R _{EXT} =22KΩ (See figure 1)			0.5	V
I _{C(diag1)}	First threshold level collector current		4.25	4.5	4.75	А
I _{C(diag1)td}	First threshold level collector current drift with temperature	See figure 4				
I _{C(diag2)}	Second threshold level collector current		5.45	5.8	6.15	А
I _{C(diag2)td}	Second threshold level collector current drift with temperature	See figure 5				
t _{d(off)}	Turn-off delay time of output current	I _C =6A; (See note 2)		25		μs
t _{f(off)}	Turn-off fall time of output current	I _C =6A		8		μs
t _{d(diag)}	Delay time of diagnostic current	$R_{EXT}=22K\Omega$ (See figure 1)		1		μs
t _{r(diag)}	Turn-on rise time of diagnostic current	R_{EXT} =22K Ω (See figure 1)		1		μs
t _{f(diag)}	Turn-off fall time of diagnostic current	R_{EXT} =22K Ω (See figure 1)		1		μs

ELECTRICAL CHARACTERISTICS (V_{CC}=13.5V; V_d=5V; Tj=25°C; R_{coil}=510m Ω ; L_{coil}=7mH unless otherwise specified)

Note 1: the primary coil current value I_{cl} must be measured 1ms after desaturation of the power stage.

Note 2: time from input switching V_{NEG} until collector voltage equal 200V.

(*) V_d - V_{be(on)}

57

PRINCIPLE OF OPERATION

The VB027, VB027(011Y), VB027(012Y) is mainly intended as high voltage power switch device driven by a logic level input and interfaces directly to a high energy electronic ignition coil.

The input V_{IN} of the VB027, VB027(011Y), VB027(012Y) is fed from a low power signal generated by an external controller that determines both dwell time and ignition point. During V_{IN} high (\geq 4V) the VB027, VB027(011Y), VB027(012Y) increases current in the coil to the desired, internally set current level.

When the collector current exceeds 4.5A, the diagnostic signal is turned high and it remains so, until the load current reaches 5.8A (second threshold). At that value, the diagnostic signal is turned low, and the μ C forces the V_{IN} to the low state. During the coil current switch-off, the primary voltage HV_C is clamped by a series of Zener diodes at an internally set value V_{cl}, typically 360V.

The collector current sensed through the R_{sense} , is limited thanks to the "Current limiter" block that, as soon as the I_{cl} level is reached, forces the darlington (using the "Driver" block) to limit the current provided.

The transition from saturation to desaturation, coil current limiting phase, must have the ability to accommodate an overvoltage. A maximum overshoot of 20V is allowed.

There can be some short period of time in which the output pin (HV_C) is pulled below ground by a negative current due to leakage inductances and stray capacitances of the ignition coil. This can cause parasitic glitches on the diagnostic output. VB027, VB027(011Y), VB027(012Y) has a built-in protection circuit that allows to lock the p-buried layer potential of the linear stage to the collector power, when the last one is pulled underground.

THERMAL BEHAVIOUR

You can see in the block diagram of the VB027, VB027(011Y), VB027(012Y) a box called overtemperature protection. The purpose of this circuit is to shift the current level at which the first diagnostic is activated down of about 1A.

This information can be managed by the micro that can take the corrective action in order to reduce the power dissipation. This block is not an effective protection but just an overtemperature detection. The shift down of the first flag level cannot be present for temperatures lower than 125° C.

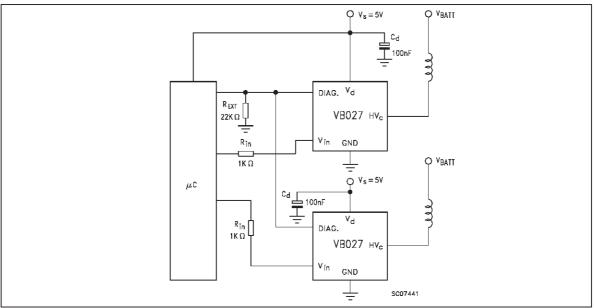
As an example of its behavior you can suppose a very simple motor management system in which the micro does just a simple arithmetic calculation to decide when to switch-off the device after the first flag threshold.

EXAMPLE:

 $I_{C(DIAG1)}$ info after x ms ($I_{C(DIAG1)}$ =2.5A)

I_{switch-off} info after kx ms.

As soon as the temperature rises over the overtemp threshold, the first diagnostic is shifted down to about 1.5A and, in this example, the switch-off current will be $kx^{1.5}/2.5$.


OVERVOLTAGE

The VB027, VB027(011Y), VB027(012Y) can withstand the following transients of the battery line:

57

- -100V / 2ms (R_i=10Ω)
- +100V / 0.2ms (R_i=10Ω)
- +50V / 400ms (R_i =4.2 Ω , with V_{IN}=3V)

FIGURE 1: Application circuit

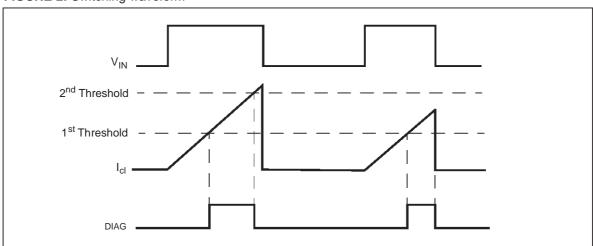
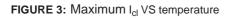



FIGURE 2: Switching waveform

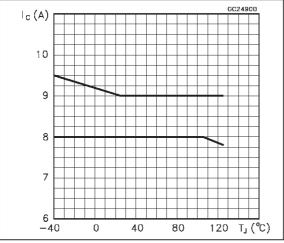


FIGURE 5: $I_{C(diag2)}$ VS temperature

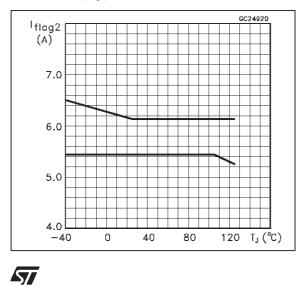
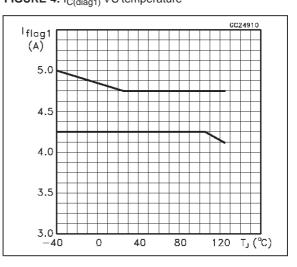
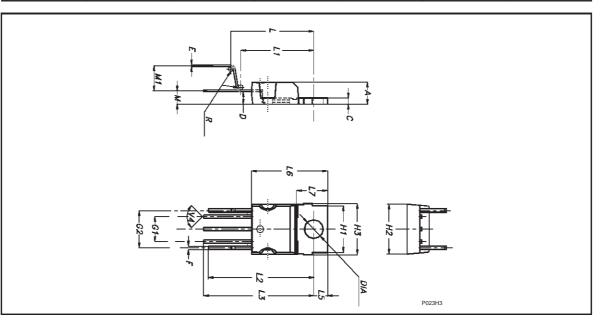
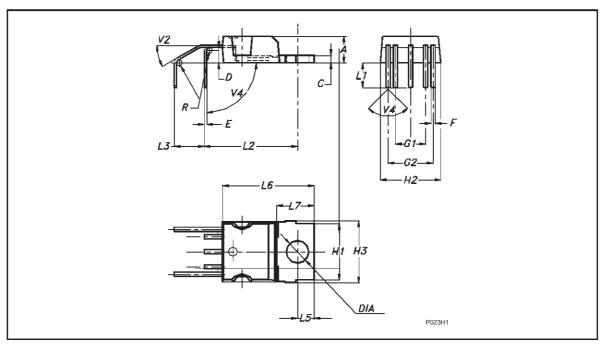
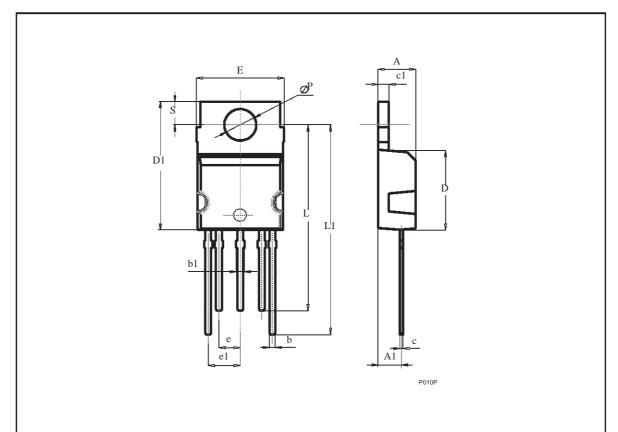




FIGURE 4: I_{C(diag1)} VS temperature



DIM.		mm.			inch		
DIIVI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX	
А	4.30		4.80	0.169		0.189	
С	1.17		1.37	0.046		0.054	
D	2.40		2.80	0.094		0.11	
E	0.35		0.55	0.014		0.022	
F	0.60		0.80	0.024		0.031	
G1	4.91		5.21	0.193		0.205	
G2	7.49		7.80	0.295		0.307	
H1	9.30		9.70	0.366		0.382	
H2			10.40			0.409	
H3		10.05	10.40		0.396	0.409	
L	15.60		17.30	6.14		0.681	
L1	14.60		15.22	0.575		0.599	
L2	21.20		21.85	0.835		0.860	
L3	22.20		22.82	0.874		0.898	
L5	2.60		3	0.102		0.118	
L6	15.10		15.80	0.594		0.622	
L7	6		6.60	0.236		0.260	
М	2.50		3.10	0.098		0.122	
M1	4.50		5.60	0.177		0.220	
R	0.50			0.02			

PENTAWATT HV 011Y (horizontal) MECHANICAL DATA inch mm. DIM. MIN. TYP MAX. MIN. TYP. MAX. А 4.30 4.80 0.169 0.189 С 1.17 1.37 0.046 0.054 D 2.40 2.80 0.094 0.11 0.35 0.55 0.014 0.022 Е F 0.60 0.80 0.024 0.031 G1 4.91 5.21 0.193 0.205 G2 7.49 7.80 0.295 0.307 9.30 H1 9.70 0.366 0.382 H2 10.40 0.409 10.05 H3 10.40 0.396 0.409 4.50 L1 0.177 3.90 0.154 L2 15.10 16.10 0.594 0.634 L3 4.80 5.40 0.189 0.213 L5 2.60 3.00 0.102 0.118 15.10 15.80 0.594 0.622 L6 L7 6.00 6.60 0.236 0.26 R 0.5 V2 30° (typ) V4 90° (typ) DIA 3.65 3.85 0.144 0.152



57

7/9

PENTAWATT HV 012Y (in line) MECHANICAL DATA

DIM.	mm.			inch		
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.3		4.8	0.169		0.189
A1	2.5		3.1	0.098		0.122
b	0.6		0.8	0.024		0.031
b1	0.75		0.9	0.03		0.035
С	0.35		0.55	0.014		0.022
c1	1.22		1.42	0.048		0.056
D	9		9.35	0.354		0.368
D1	15.2		15.8	0.598		0.622
е	2.44		2.64	0.096		0.104
e1	3.71		3.91	0.146		0.154
E	10		10.4	0.394		0.409
L	22.32		22.92	0.879		0.902
L1	25.1		25.7	0.988		1.012
Р	3.65		3.95	0.144		0.156
S	2.55		3.05	0.1		0.12

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in ITALY- All Rights Reserved.

STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco -The Netherlands- Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.