阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

Panasonic ideas for life

POWER TYPE
 SMALL \& SLIM
 AUTOMOTIVE RELAY

CT RELAYS <POWER TYPE>

FEATURES

1. Compact type for automotives We successfully developed a power type that is the same size as our CT relay. 2. 30 A maximum switching capacity Switching of 30 A motor loads is possible due to change of COM spring material and other improvements.
2. Still top-of-its-class for silent operation Maintains equally silent operation as our CT relay (ACT).
3. Sealed type

Sealed type makes automatic cleaning possible.

APPLICATIONS

Power windows, Powered seats, Auto door lock, Slide door closers, Power sunroof, etc.

10-terminal layout

*8-terminal type has no terminals.

SPECIFICATIONS

Contact

Arrangement			$\begin{gathered} 1 \text { Form } \mathrm{C} \times 2 \text {, } \\ 1 \text { Form } \mathrm{C} \end{gathered}$
Contact material			Ag alloy (Cadmium free)
Initial contact resistance (Initial) (By voltage drop 6 V DC 1 A)			Typ. $7 \mathrm{~m} \Omega$ (N.O.) Typ. $10 \mathrm{~m} \Omega$ (N.C.)
Rating	Nominal capacity	witching	$\begin{aligned} & \text { N.O.: } 30 \text { A } 14 \text { V DC } \\ & \text { N.C.: } 10 \text { A } 14 \mathrm{~V} \text { DC } \end{aligned}$
	Max. carrying current (N.O.)		40 A for 2 minutes, 25 A for 1 hour (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 35 A for 2 minutes, 20 A for 1 hour (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Min. switc	ing capacity ${ }^{\text {1 }}$	1 A 12 V DC
Expected life (min. operation)	Mechanica	(at 120 cpm)	Min. 10^{6}
	Electrical	Resistive load	Min. $5 \times 10^{4 * 1}$
		Motor load	Min. 105*2 (free)
		Motor load	Min. 5×104*3 (lock)
Coil			
Nominal operating power			1,000 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

*1 At nominal switching capacity, operating frequency: 1s ON, 9s OFF
*2 N.O.: at 7 A (steady), 30 A (inrush)/N.C.: at 15 A (brake) 14 V DC, operating frequency: 0.5s ON, 9.5s OFF
*3 At 30A 14 V DC (Motor lock), operating frequency: 0.5 s ON, 9.5 s OFF
*4 Measurement at same location as "Initial breakdown voltage" section
*5 Detection current: 10 mA
*6 Excluding contact bounce time
*7 Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$
*8 Half-wave pulse of sine wave: 6 ms
*9 Detection time: $10 \mu \mathrm{~s}$
*10 Time of vibration for each direction; X, Y, direction: 2 hours
Z direction: 4 hours
*11 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information. Please inquire if you will be using the relay in a high temperature atmosphere ($110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$).

* If the relay is used continuously for long periods of time with coils on both sides in an energized condition, breakdown might occur due to abnormal heating depending on the carrying condition. Therefore, please inquire when using with a circuit that causes an energized condition on both sides simultaneously.

Characteristics

Max. operating speed (at nominal switching capacity)			6 cpm
Initial insulation resistance*4			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*5	Between open contacts		500 Vrms for 1 min.
	Between co and coil	ontacts	500 Vrms for 1 min.
Operate time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Release time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Shock resistance ${ }^{\text {F }}$ F		ctional*7	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		tructive*8	Min. 1,000 m/s² 100 G$\}$
Vibration resistance		ctional*9	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz}, \\ \text { Min. } 44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\} \end{gathered}$
		tructive*10	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 500 \mathrm{~Hz}, \\ \text { Min. } 44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\} \end{gathered}$
Conditions for operation, transport and storage*11 (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Twin type: approx. 8.0 g . 280 z 1 Form C type: approx. 4.0 g . 14 oz

CT (ACTP)

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Standard packing; 1 Form C: Carton(tube package) 30pcs. Case 1,500pcs. 1 Form C $\times 2$: Carton(tube package) 30pcs. Case 900pcs.

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance, Ω	Nominal operating current, mA	Nominal operating power, mW	Usable voltage range, V DC
1 Form C	ACTP112	12	Max. 7.2	Min. 1.0	144 $\pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16
$\begin{gathered} 1 \text { Form } \mathrm{C} \times 2 \\ (8 \text { terminals type) } \end{gathered}$	ACTP212	12	Max. 7.2	Min. 1.0	144 $\pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16
$\begin{gathered} 1 \text { Form } \mathrm{C} \times 2 \\ (10 \text { terminals type) } \end{gathered}$	ACTP512	12	Max. 7.2	Min. 1.0	144 $\pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS $_{\text {(mm inch) }}$
Download CAD Data from our Web site.

1. Twin type (8 terminals)

CAD Data

Tolerance
Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

2. Twin type (10 terminals)

CAD Data

Dimension: Max. 1mm . 039 inch: 1 to 3 mm 039 to 118 inch $\pm \pm .008$ Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

Schematic (Bottom view)

[^0] Intervals between terminals is measured at A surface level.

3. Single type (1 Form C)

CAD Data

Pre-soldering

Dimension:
Max. 1mm . 039 inch:
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch:

PC board pattern (Bottom view)

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor for power windows

(M) : Power window motor

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: ACTP212, 3pcs.
Contact carrying current: 0A, 10A, 20A

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACTP212, 3pcs.
Contact carrying current: 0A, 10A, 20A

2. Ambient temperature and operating voltage range

CT (ACTP)

3. Distribution of pick-up and drop-out voltage Sample: ACTP212, 40pcs.

4. Distribution of operate and release time

Sample: ACTP212, 40pcs.

* Without diode

5. Electrical life test (Motor free)

Sample: ACTP212, 3pcs.
Load: 7A steady, Inrush 30A
Brake current: 15A 14V DC,
Power window motor actual load (free condition)
Operating frequency: ($\mathrm{ON}: \mathrm{OFF}=0.5 \mathrm{~s}: 9.5 \mathrm{~s}$)
Ambient temperature: Room temperature Circuit:

Load current waveform

Inrush current: 30A, Steady current: 7A
Brake current: 15A
10A
100 ms

Change of pick-up and drop-out voltage

Change of contact resistance

6. Electrical life test (Motor lock)

Sample: ACTP212, 3pcs.
Load: 30A 14V DC
Switching frequency: (ON : OFF $=0.5 \mathrm{~s}: 9.5 \mathrm{~s}$)
Ambient temperature: Room temperature
Circuit:

Load current waveform

Change of pick-up and drop-out voltage

Change of contact resistance

For Cautions for Use, see Relay Technical Information.

[^0]: * Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering.

