

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

アレイ形積層セラミックコンデンサ ARRAY TYPE MULTILAYER CERAMIC CAPACITOR

code

СН

OPERATING TEMP.

特長 FEATURES

- ・2125形状で4回路構成であるため、より高密度、高効率な実装を実現 ・1回路あたりの容量は1μFの大容量
- ・内部電極には、信頼性とコストパフォーマンスに優れたNiを使用しています。
- 4 circuits in 2125 package allows higher placement density and efficiency The capacitance in each circuit, F or B dielectric, is $1\,\mu$ F
- · Internal electrode is nickel for increased cost performance and reliability

用途 APPLICATIONS

- ·一般電子機器用
- ・通信機器用 (携帯電話、PHS、コードレス電話etc)

- · General electronic equipment
- Communication equipment (mobile phone, PHS, cordless phone, etc.)

形名表記法 ORDERING CODE

Temp.characteristics operating Temp. range

_

_

_

25~+85℃

55~+85℃

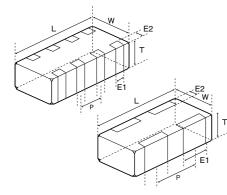
55~+125℃

55~+125℃

В

X5R

X7R


C0H

1		3		5		7		9	
Rated	voltage(VDC)	End termina	tion	Temperat	ure characteristics code	Capacit	ance tolerances(%)	Speci	al code
J L E	6.3 10 16	к	Plated	B J X5R X7R CH C0H	-55~+125℃±15%	M K F	±20 ±10 ±1pF		Standard products
<u> </u>	25 50	Dimensions(ca	se size)(mm) 1.4×1.0			8 Thickne	ess(mm)	Packa T	aging Tape & reel
Series	s name 4 circuit multilayer	212(0805) 316(1206)	2.0×1.25 3.2×1.6		al capacitance(pF)	<u>В</u> А Д	0.6 0.8 0.85	1	
2	capacitors 2 circuit multilayer capacitors			<u>example</u> 104 105	100,000 1,000,000	F	1.15		al code Standard products

TAIYO YUDEN

外形寸法 EXTERNAL DIMENSIONS

Type(EIA)	L	W	E1	E2	Р		Т
	4 07 1 0 07	1 00 1 0 00	0.001.0.10	0.001.0.40	0.041.0.40	В	0.60±0.06
2K110	1.37±0.07	1.00±0.08	0.36±0.10	0.20±0.10	0.64±0.10		(0.024±0.003)
(0504)	(0.054±0.003)	(0.039±0.003)	(0.014±0.004)	(0.008±0.004)	(0.025±0.004)	Α	0.80±0.08
							(0.031±0.003)
□4K212	2.00 ± 0.10	1.25±0.10	0.25 ± 0.10	0.25±0.15	0.50 ± 0.10	D	0.85±0.10
(0805)	(0.079±0.004)	(0.049±0.004)	(0.010±0.004)	(0.010±0.006)	(0.020±0.004)		(0.033±0.004)
2K212	2.00±0.10	1.25±0.10	0.50 ± 0.20	0.25±0.15	1.00 ± 0.10	D	0.85±0.10
(0805)	(0.079±0.004)	(0.049±0.004)	(0.020±0.008)	(0.010±0.006)	(0.039 ± 0.004)	U	(0.033±0.004)
_4K316	3.20±0.15	1.60±0.15	0.40 ± 0.20	0.30±0.20	0.80±0.10	F	1.15±0.15
(1206)	(0.126±0.006)	(0.063±0.006)	(0.016±0.008)	(0.012±0.008)	(0.031 ± 0.004)	Г	(0.045±0.006)

Unit: mm (inch)

概略バリエーション AVAILABLE CAPACITANCE RANGE

BJ/ X7R, BJ/ X5R

	Туре		1410 2K ⁻			2125 2125	2連 212		2125 □4K	。 212			216 4]4K31	
	Temp.Char	BJ/	X7R	BJ/	X5R	BJ/	X5R		BJ/	X5R			BJ/ X5F	1
Cap	VDC	25V	16V	10V	6.3V	10V	6.3V	25V	16V	10V	6.3V	16V	10V	6.3V
[μ F]	[pF:3digits]													
0.01	103	В												
0.022	223	В												
0.047	473		В											
0.1	104		В					D	D					
0.22	224			В						D				
0.47	474			A						D				
1.0	105				А	D					D	F	F	F
2.2	225						D							

9	CH/ COH	4	
		Туре	1410 2連
			2K110
		Temp.Char	CH / C0H
	Cap	VDC	50V
	[pF]	[pF:3digits]	
	10	100	В
	12	120	В
	15	150	В
	18	180	В
	22	220	В
	27	270	В
	33	330	В
	39	390	В
	47	470	В
	56	560	В
	68	680	В
	82	820	В
	100	101	В

※グラフ記号は製品厚みを表します。

Letters inside the shaded boxes indicate thickness.

※グラフ記号は製品厚みを表します。 Letters inside the shaded boxes indicate thickness.

			温度特性					
温度特性コード			静電容量許容差[%]	tan∂(%)				
Temp. char.Code	準拠規格		温度範囲[℃]	基準温度(℃)	静電容量変化率	Capacitance tolerance	Dissipation factor	
	Applicable standard		Temperature range Ref. Temp. C		Capacitance change			
	JIS	В	-25~85	20	±10[%]	±20(M)		
BJ	EIA	X5R	-55~85	25	±15[%]	. ,	5.0%max.*	
	EIA	X7R	-55~125	25	±15[%]	±10(K)		
СН	JIS	СН	-55~125	20	±60[ppm/℃]	+10(1/)	0.1%max.**	
on	EIA	C0H	-55~125	25	±60[ppm/℃]	±10(K)	0.1 /olliax.	

* 10% : J2K110, J4K212 3.5% : 110type C<0.1 µF

** 27pF以下 Q≥400+20・C 30pF以上 Q≥1000

アイテム一覧 Part Numbers P.76

信頼性 Reliability Data

P.80

定 格 電 圧	形名		公 利 静電容量	称 量	温度特性	tan δ	実装条件 Soldering method	静電容量 許容差	厚み	
电 /工 RatedVoltage			Capacita	ince	Temperature	Dissipation	R:リフロー Reflow soldering	Capacitance	Thickness	
Raledvollage	Ordering code		[μF]	0	characteristics	factor[%]Max.	W:70-Wave soldering	tolerance	[mm](inch)	
	T2K110 BJ103 B		0.01		B/X7R	3.5				
25V	T2K110 BJ223□B		0.022	2		0.0	R	±20%[M] ±10%[K]		
	T2K110 BJ104□B		0.1		B/X5R	5			0.6±0.06	
16V	E2K110 BJ473 B		0.047	'	B/X7R	3.5			(0.024±0.002)	
100	E2K110 BJ104 B		0.1							
101/	L2K110 BJ224 B		0.22		B/X5R	5		- 10/0[N]		
10V L:	L2K110 BJ474 A		0.47		D/AOR				0.040.00	
	J2K110 BJ105□A*		1.0			10			0.8±0.08	
0.3V	J2K110 BJ225□A*		2.2		BJ/X5R	10			(0.031±0.003)	

The state of the s

■1410TYPE (0504 case size) 2連タイプ (2 circuit type) _

定格	形名	公称	/m/, ~ 10 1 -	Q	実装条件	静電容量	厚み
電圧		静電容量			Soldering method	許容差	
RatedVoltage	Orderine code	Capacitan	ce Temperature	symbol	R:リフロー Reflow soldering	Capacitance	Thickness
naleuvollage	Ordering code	[pF]	characteristics		W:フロー Wave soldering	tolerance	[mm](inch)
	U2K110 CH100FB	10					
	U2K110 CH120KB	12					
	U2K110 CH150KB	15		400+20 · C	R	±10%[K]	
	U2K110 CH180KB	18		40012010			0.6±0.06
	U2K110 CH220KB	22					
	U2K110 CH270KB	27					
50V	U2K110 CH330KB	33	СН				
	U2K110 CH390KB	39					(0.024±0.002)
	U2K110 CH470KB	47					
	U2K110 CH560KB	56		1000 (0.1%)			
U	U2K110 CH680KB	68					
	U2K110 CH820KB	82					
	U2K110 CH101KB	100					

■2125TYPE (0805 case size) 4連タイプ (4 circuit type) ____

定格	形名	公称	温度特性	tan δ	実装条件	静電容量	厚み
電 圧 RatedVoltage		静電容量 Capacitance	Temperature		Soldering method R:リフロー Reflow soldering	er e /=	Thickness
Haledvollage	Ordering code	[µF]	characteristics	factor[%]Max.	W:70-Wave soldering	tolerance	[mm](inch)
25V	T4K212 BJ104□D	0.1					
16V	E4K212 BJ104□D	0.1	B/X5R	5		+200/[[M]	0.85±0.1
10V	L4K212 BJ224□D	0.22	B/X5H	5	R	±20%[M]	
100	L4K212 BJ474□D	0.47				±10%[K]	(0.033±0.004)
6.3V	J4K212 BJ105□D*	1.0	X5R	10			

■2125TYPE (0805 case size) 2連タイプ (2 circuit type) ____

定格	T4 47	公 称	温度特性	tan δ	実装条件	静電容量	厚み
電圧	形名	静電容量			Soldering method	許容差	
电 /工 RatedVoltage	Ouderine ende	Capacitance	Temperature	Dissipation	R:リフロー Reflow soldering	Capacitance	Thickness
naleuvollage	Ordering code	[μ F]	characteristics	factor[%]Max.	W:7D - Wave soldering	tolerance	[mm](inch)
25V	T2K212 BJ105□D	1.0				±20%[M]	
16V	E2K212 BJ105 D	1.0	B/X5R	5		±10%[K]	0.85±0.1
10V	L2K212 BJ105MD	1.0	1		R	±20%[M]	(0.033±0.004)
6.3V	J2K212 BJ225MD*	2.2	X5R	10		_20/0[W]	

■3216TYPE (1206 case size) 4連タイプ (4 circuit type) _

定格	TV A	公 称	温度特性	tan δ	実装条件	静電容量	厚み
正 哈 電 圧	形名	静電容量			Soldering method	許容差	
_	Ouderine ende	Capacitance	Temperature	Dissipation	R:リフロー Reflow soldering	Capacitance	Thickness
RatedVoltage	Ordering code	[μ F]	characteristics	factor[%]Max.	W:フロー Wave soldering	tolerance	[mm](inch)
16V	E4K316 BJ105□F*					±20%[M]	1.15±0.15
10V	L4K316 BJ105□F	1.0	B/X5R	5	R	±20%[M] ±10%[K]	(0.045±0.006)
6.3V	J4K316 BJ105□F					-10%[K]	(0.045±0.006)

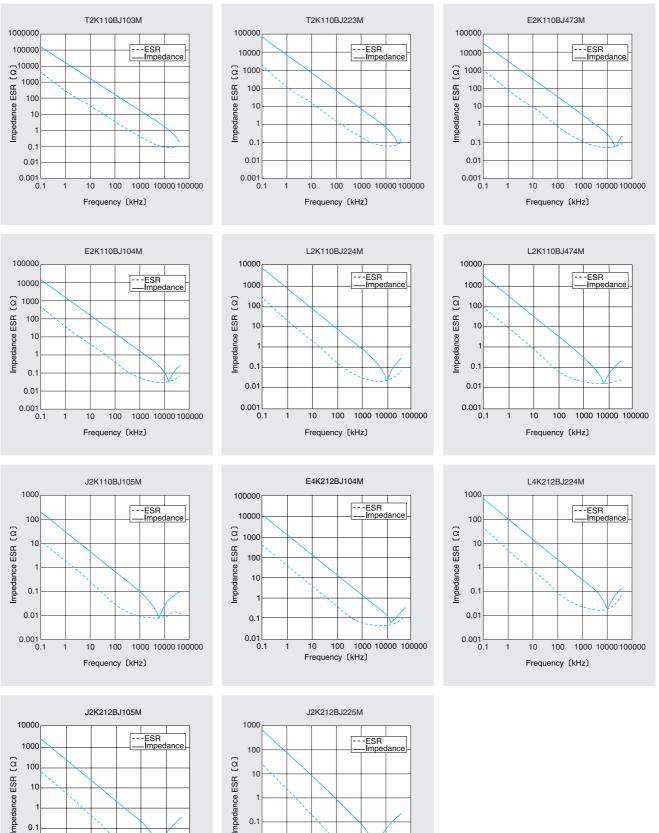
形名の□には静電容量許容差記号が入ります。 *高温負荷試験の試験電圧は定格電圧の1.5倍 $\hfill\square$ Please specify the capacitance tolerance code.

 $^{\ast}\text{Test}$ voltage of Loading at high temperature test is 1.5 time of the rated voltage.

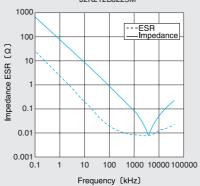
TAIYO YUDEN

0. 0.0

0.001


0.1

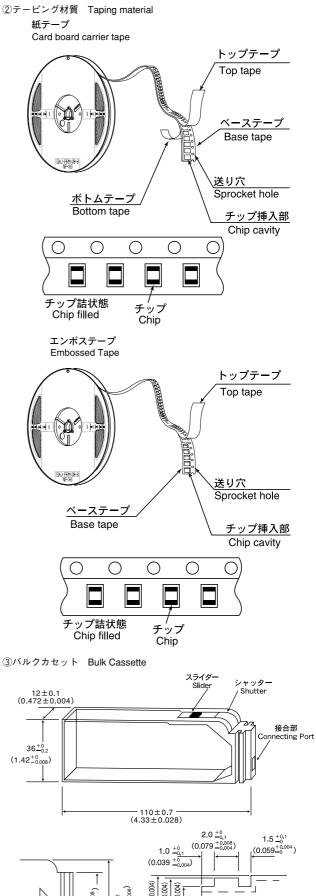
1

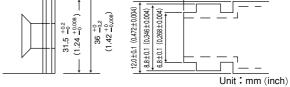

10 100

Frequency (kHz)

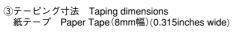
1000 10000 100000

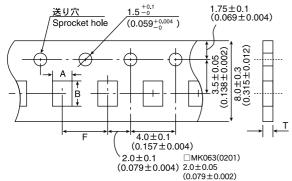
インピーダンス・ESR-周波数特性例 Example of Impedance ESR vs. Frequency characteristics ・当社積層セラミックコンデンサ例 (Taiyo Yuden multilayer ceramic capacitor)

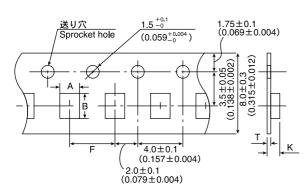

梱包 PACKAGING


①最小受注単位数 Minimum Quantity ■袋づめ梱包 Bulk packaging

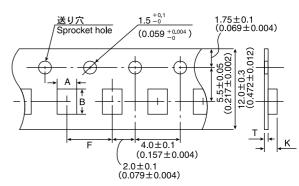
■袋つめ梱包 Bul	k packaging		
形式(EIA) Type	製品厚み Thickness		標準数量 Standard quantity
туре	mm(inch)	code	[pcs]
MK105(0402)	0.5	V, W	
UK105(0402)	(0.020)	W	
□MK107(0603)	0.8 (0.031)	A Z	
2K110(0504)	0.8 (0.031)	А	
_2K110(0304)	0.6 (0.024)	В	
	0.85 (0.033)	D	
□MK212(0805)	1.25 (0.049)	G	
4K212(0805)	0.85 (0.033)	D	
2K212(0805)	0.85 (0.033)	D	
	0.85 (0.033)	D	1000
	1.15 (0.045)	F	
□MK316(1206)	1.25 (0.049)	G	
	1.6 (0.063)	L	
	0.85 (0.033)	D	
	1.15 (0.045)	F	
	1.5 (0.059)	н	
□MK325(1210)	1.9 (0.075)	N	
	2.0max (0.079)	Y	
	2.5 (0.098)	М	


■テーピング梱包 Taped packaging


形式(EIA) Type	製品厚み Thickness			数量 I quantity cs]
	mm(inch)	code	紙テープ paper	エンボステープ Embossed tape
□MK063(0201)	0.3 (0.012)	Р	15000	—
DMK105(0402)	0.5	V, W	10000	_
UK105(0402)	(0.020)	W	10000	
	0.5 (0.020)	V	4000	_
MK107(0603)	0.45 (0.018)	к	4000	—
	0.8 (0.031)	A Z	4000	—
2K110(0504)	0.8 (0.031)	A	4000	—
_2K110(0504)	0.6 (0.024)	В	4000	_
	0.45 (0.018)	к	4000	_
MK212(0805)	0.85 (0.033)	D	4000	_
	1.25 (0.049)	G	_	3000
4K212(0805)	0.85 (0.033)	D	4000	_
2K212(0805)	0.85 (0.033)	D	4000	_
	0.85 (0.033)	D	4000	_
□MK316(1206)	1.15 (0.045)	F		
□4K316(1206)	1.25 (0.049)	G		3000
	1.6 (0.063)	L	_	2000
	0.85 (0.033)	D		
	1.15 (0.045)	F	1	
	1.5 (0.059)	н		2000
□MK325(1210)	1.9 (0.075)	N	1	
	2.0max (0.079)	Y	_	2000
	2.5 (0.098)	М	_	500
	1.9 (0.075)	Y	—	1000
□MK432(1812)	2.5 (0.098) 3.2 (0.125)	M	_	500
	0.2 (0.120)	0		1

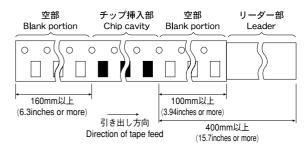

105, 107, 212形状で個別対応致しますのでお問い合せ下さい。 Please contact any of our offices for accepting your requirement according to dimensions 0402, 0603, 0805.(inch) 梱包 PACKAGING

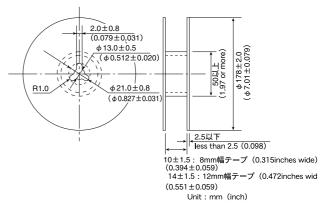
Туре	チッフ	[•] 挿入部	挿入ピッチ	テープ厚み
(EIA)	Chip	Cavity	Insertion Pitch	Tape Thickness
	А	В	F	Т
□MK063(0201)	0.37±0.06	0.67±0.06	2.0±0.05	0.45max.
	(0.06±0.002)	(0.027±0.002)	(0.079±0.002)	(0.018max.)
MK105(0402)	0.65±0.1	1.15±0.1	2.0±0.05	0.8max.
UK105(0402)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max.)
	1.0±0.2	1.8±0.2	4.0±0.1	1.1max.
□MK107(0603)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max.)
2K110(0504)	1.15±0.2	1.55±0.2	4.0±0.1	1.0max.
2K110(0504)	(0.045±0.008)	(0.061±0.008)	(0.157±0.004)	(0.039max.)
MK212(0805)	1.65±0.2	2.4±0.2		
4K212(0805)	(0.065±0.008)	(0.094±0.008)	4.0±0.1	1.1max.
2K212(0805)			(0.157±0.004)	(0.043max.)
	2.0±0.2	3.6±0.2		
□MK316(1206)	(0.079±0.008)	(0.142±0.008)		
Unit : mm(inch)				


エンボステープ Embossed tape (8mm幅) (0.315inches wide)

Туре	チッフ	"挿入部	挿入ピッチ	テーフ	プ厚み
(EIA)	Chip	cavity	Insertion Pitch	Tape Th	ickness
	А	В	F	K	Т
	1.65±0.2	2.4±0.2			
□MK212(0805)	(0.065 ± 0.008)	(0.094±0.008)			
MK316(1206)	2.0±0.2	3.6±0.2	4.0±0.1	2.5max.	0.6max
24K316(1206)	(0.079 ± 0.008)	(0.142±0.008)	(0.157±0.004)	(0.098max.)	(0.024max.)
MK325 (1210)	2.8±0.2	3.6±0.2		3.4max.	
	(0.110±0.008)	(0.142±0.008)		(0.134max.)	
				Init m	m(inch)

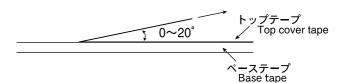
Unit: mm(inch)


エンボステープ Embossed tape (12mm幅) (0.472inches wide)


Туре	チップ挿入部		挿入ピッチ	テーフ	プ厚み
(EIA)	Chip cavity		Insertion Pitch	Tape Th	ickness
	A B		F	K	Т
□MK432(1812)	3.7±0.2 (0.146±0.008)	4.9±0.2 (0.193±0.008)	8.0±0.1 (0.315±0.004)		0.6max. (0.024max.)

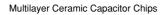
Unit: mm(inch)

④リーダー部/空部 Leader and Blank portion



⑥トップテープ強度 Top Tape Strength

トップテープのはがし力は下図矢印方向にて0.1~0.7Nとなります。 The top tape requires a peel-off force of $0.1 \sim 0.7N$ in the direction of the arrow as illustrated below.



RELIABILITY DATA

Multilayer Ceramic Capacitor Chips

		Specifi	ed Value		-
Item	Temperature Com	pensating (Class 1)	High Permiti	vity (Class 2)	Test Methods and Remarks
	Standard	High Frequency Type	Standard Note1	High Value	
1.Operating Temperature Range	-55 to +125°C		B:-55 to +125℃ F:-25 to +85℃	-25 to +85℃	High Capacitance Type BJ(X7R):-55~+125°C, BJ(X5R):-55~+88 C(X5S):-55~+85°C, C(X6S):-55~+10 E(Y5U):-30~+85°C, F(Y5V):-30~+85
2.Storage Temperature Range	-55 to +125℃		B:-55 to +125℃ F:-25 to +85℃	-25 to +85℃	High Capacitance Type BJ(X7R):-55~+125°C, BJ(X5R):-55~+8 C(X5S):-55~+85°C, C(X6S):-55~+10 E(Y5U):-30~+85°C, F(Y5V):-30~+88
3.Rated Voltage	50VDC,25VDC, 16VDC	16VDC 50VDC	50VDC,25VDC	50VDC,35VDC,25VDC 16VDC,10VDC,6.3VDC 4DVC	
4.Withstanding Voltage Between terminals	No breakdown or dam- age	No abnormality	No breakdown or dama	ge	Applied voltage: Rated voltage×3 (Class 1) Rated voltage×2.5 (Class 2) Duration: 1 to 5 sec. Charge/discharge current: 50mA max. (Class 1,2)
5.Insulation Resistance	10000 MΩ min.		smaller.	$M\Omega ., whichever is the$	Applied voltage: Rated voltage Duration: 60±5 sec.
6.Capacitance (Tolerance)	0.5 to 5 pF: ±0.25 pF 1 to 10pF: ±0.5 pF 5 to 10 pF: ±1 pF 11 pF or over: ± 5% ±10% 105TYPER△, S△, T△, U△ only 0.5~2pF: ±0.1pF 2.2~20pF: ±5%	0.5 to 2 pF : ±0.1 pF 2.2 to 5.1 pF : ±5%	Note 5 B: ±10%, ±20% F: +80 F: -20 %	B:±10%,±20% C:±10%,±20% E:−20%/+80% F:−20%/+80%	Charge/discharge current: 50mA max. Measuring frequency : Class1 : 1MHz±10%(C≤1000pF) 1 k Hz±10%(C>1000pF) Class2 : 1 k Hz±10%(C≤22µF) 120Hz±10Hz(C>22µF) Measuring voltage : Class1 : 0.5~5Vrms(C≤1000pF) 1±0.2Vrms(C>1000pF) Class2 : 1±0.2Vrms(C≤22µF) 0.5±0.1Vrms(C>22µF) Bias application: None
7.Q or Tangent of Loss Angle (tan ∂)	Under 30 pF : Q≧400 + 20C 30 pF or over : Q≧1000 C= Nominal capacitance	Refer to detailed speci- fication	B: 2.5% max.(50V, 25V) F: 5.0% max. (50V, 25V)		$\label{eq:multilayer:} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
8.Temperature (Without Characteristic voltage of Capacitance application)	$\begin{tabular}{ c c c c } \hline CK: 0\pm250 \\ CJ: 0\pm120 \\ CH: 0\pm60 \\ CG: 0\pm30 \\ PK: -150\pm250 \\ PJ: -150\pm120 \\ PH: -150\pm60 \\ RK: -220\pm250 \\ RJ: -220\pm250 \\ RJ: -220\pm60 \\ SK: -330\pm250 \\ SJ: -330\pm120 \\ SH: -330\pm60 \\ TK: -470\pm250 \\ TJ: -470\pm120 \\ TH: -470\pm60 \\ UK: -750\pm250 \\ UJ: -750\pm120 \\ SL: +350\ to -1000\ (ppm/C) \end{tabular}$	CH:0±60 RH:-220±60 (ppm/C)	B: $\pm 10\%(-25-85C)$ F: $^{+30}_{-80}\%(-25-85C)$ B(X7R): $\pm 15\%$ F(Y5V): $^{+22}_{-82}\%$	$\begin{array}{c} \text{B}:\pm10\% \\ (-25{\sim}+85\text{C}) \\ \text{C}:\pm20\% \\ (-25{\sim}+85\text{C}) \\ \text{E}:+20\%/-55\% \\ (-25{\sim}+85\text{C}) \\ \text{F}:+30\%/-80\% \\ (-25{\sim}+85\text{C}) \\ \text{B}(X7R, X5R): \\ \pm15\% \\ \text{C}(X5S, X6S): \\ \pm22\% \\ \text{E}(Y5U): \\ +22\%/-56\% \\ \text{F}(Y5V): \\ +22\%/-82\% \end{array}$	According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. $\frac{(C_{85} - C_{20})}{C_{20} \times \Delta T} \times 10^{-6} \text{ (ppm/C)}$ High permitivity: Change of maximum capacitance deviation in step 1 to Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature) Temperature at step 3: +20°C (Reference temperature) Temperature at step 5: +20°C Reference temperature for X7R, X5R, X5S, X6S, Y5U and Y5 shall be +25°C
9.Resistance to Flexure of Substrate	SL + 43010-1000 (ppm/c) Appearance: No abnormality Capacitance change: Within ±5% or ±0.5 pF, whichever is larger.	Appearance: No abnormality Capacitance change: Within±0.5 pF	Appearance: No abnormality Capacitance change: B, BJ, C: Within ±12.5% E, F: Within ±30%	6	Warp: 1mm Testing board: glass epoxy-resin substrate Thickness: 1.6mm (063 TYPE : 0.8mm) The measurement shall be made with board in the bent positi Board R_{230} R_{230} Warp 45 ± 2 45 ± 2 (Unit: mm)

	Specified Value				
Item	Temperature Com	pensating (Class 1)	High Permitti	vity (Class 2)	Test Methods and Remarks
	Standard	High Frequency Type	Standard Note1	High Value	
10.Body Strength		No mechanical dam- age.			High Frequency Multilayer: Applied force: 5N R0.5 Duration: 10 sec. L \geq W V Chip Chip Chip
11.Adhesion of Electrode	No separation or indicat	ion of separation of electr	ode.		Applied force: 5N Duration: 30±5 sec. Hooked jig R=05 + Chip Cross-section
12.Solderability	At least 95% of terminal	electrode is covered by n	new solder.		Solder temperature: 230±5°C Duration: 4±1 sec.
13.Resistance to soldering	Appearance: No abnor- mality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnor- mality Capacitance change: Within ±2.5% Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	۷ tan ک: Initial value Insulation resistance: In	Vithin ±7.5% (B, BJ) Vithin ±15% (C) Vithin ±20% (E, F) Note 4	Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Solder temperature: 270±5°C Duration: 3±0.5 sec. Preheating conditions: 80 to 100°C, 2 to 5 min. or 5 to 10 min. 150 to 200°C, 2 to 5 min. or 5 to 10 min. Recovery: Recovery for the following period under the stan- dard condition after the test. 24±2 hrs (Class 1) 48±4 hrs (Class 2)
14.Thermal shock	Appearance: No abnor- mality Capacitance change: Within \pm 2.5% or \pm 0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnor- mality Capacitance change: Within ±0.25pF Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	۷ tan ک: Initial value Insulation resistance: In	Vithin ±7.5% (B, BJ) Vithin ±15% (C) Vithin ±20% (E , F) Note 4	Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Conditions for 1 cycle: Step 1: Minimum operating temperature $^{+0}_{-3}$ °C 30±3 min. Step 2: Room temperature 2 to 3 min. Step 3: Maximum operating temperature $^{-0}_{+3}$ °C 30±3 min. Step 4: Room temperature 2 to 3 min. Step 4: Room temperature 2 to 3 min. Number of cycles: 5 times Recovery after the test: 24±2 hrs (Class 1) 48±4 hrs (Class 2) 48±4 hrs (Class 2)
15.Damp Heat (steady state)	Appearance: No abnormality Capacitance change: Within $\pm 5\%$ or $\pm 0.5pF$, whichever is larger. Q: C \geq 30 pF : Q \geq 350 $10 \leq$ C $<$ 30 pF : Q \geq 275 + 2.5C C $<$ 10 pF : Q \geq 200 $+$ 10C C: Nominal capacitance Insulation resistance: 1000 M Ω min.	Appearance: No abnormality Capacitance change: Within ±0.5pF, Insulation resistance: 1000 MΩ min.	Appearance: No abnor- mality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: 50 M $\Omega \mu$ F or 1000 M Ω whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ:Within $\pm 12.5\%$ C(X6S) Within $\pm 25\%$ C(X5S),E,F Within $\pm 30\%$ Note 4 tan δ : BJ: 5.0% max. C, E, F: 11.0% max. Insulation resistance: 50 M $\Omega \mu$ F or 1000 M Ω whichever is smaller. Note 5	Multilayer : Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Temperature: 40 ± 2 °C Humidity: 90 to 95% RH Duration: 500 $^{+24}_{-0}$ hrs Recovery: Recovery for the following period under the stan- dard condition after the removal from test chamber. 24 ± 2 hrs (Class 1) 48 ± 4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60 ± 2 °C Humidity: 90 to 95% RH Duration: 500 $^{+24}_{-0}$ hrs Recovery: Recovery for the following period under the stan- dard condition after the removal from test chamber. 24 ± 2 hrs (Class 1)

Multilayer Ceramic Capacitor Chips

	Specified Value				
Item	Temperature Com	pensating (Class 1)	High Permitti	vity (Class 2)	Test Methods and Remarks
	Standard	High Frequency Type	Standard Note1	High Value	
16.Loading under Damp Heat	Appearance: No abnor- mality Capacitance change: Within \pm 7.5% or \pm 0.75pF, whichever is larger. Q: C \geq 30 pF: Q \geq 200 C <30 pF: Q \geq 100 + 10C/3 C : Nominal capaci- tance Insulation resistance: 500 M Ω min.	Appearance: No abnor- mality Capacitance change: $C \le 2 pF$: Within $\pm 0.4 pF$ $C > 2 pF$: Within $\pm 0.75 pF$ C: Nominal capaci- tance Insulation resistance: 500 M Ω min.	Appearance: No abnor- mality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: 25 M $\Omega \mu$ F or 500 M Ω , whichever is the smaller. Note 5	Appearance: No abnor- mality Capacitance change: BJ: Within $\pm 12.5\%$ C.E.F: Within $\pm 30\%$ Note 4 tans : BJ: 5.0%max. C.E.F: 11%max. Insulation resistance: 25 MQ μ F or 500 MQ, whichever is the smaller. Note 5	According to JIS C 5102 Clause 9. 9. Mutiliayer: Preconditioning: Voltage treatment (Class 2) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 $^{+24}_{-0}$ hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. (Class 1,2) Recovery: Recovery for the following period under the standard condition after the removal from test chamber. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 $^{+24}_{-0}$ hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. Recovery: 24±2 hrs of recovery under the standard condi- tion after the removal from test chamber.
17.Loading at High Tempera- ture	Appearance: No abnormality Capacitance change: Within $\pm 3\%$ or $\pm 0.3pF$, whichever is larger. Q: C ≥ 30 pF : Q ≥ 350 $10 \leq C < 30$ pF : Q ≥ 275 $\pm 2.5C$ C < 10 pF: Q $\geq 200 \pm 10C$ C : Nominal capacitance Insulation resistance: $1000 M\Omega$ min.	Appearance: No abnor- mality Capacitance change: Within ±3% or ±0.3pF, whichever is larger. Insulation resistance: 1000 MΩ min.	Appearance: No abnor- mality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ Note 4 tan δ : B: 4.0% max. F: 7.5% max. Insulation resistance: 50 M $\Omega\mu$ F or 1000 M Ω , whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ : Within±12.5% Within±20% ** Within±25% (X6S) Within±30% (X5S) E、F : Within±30% Note 4 tana : BJ : 5.0%max. C、F、F : 11%max. Insulation resistance: 50 MΩ μF or 1000 MΩ, whichever is smaller. Note 5	According to JIS C 5102 clause 9.10. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature:125±3°C(Class 1, Class 2: B, BJ(X7R)) 85±2°C (Class 2: BJ,F) Duration: 1000 ⁺⁴⁸ / ₄ hrs Applied voltage: Rated voltage×2 Note 6 Recovery: Recovery for the following period under the stan- dard condition after the removal from test chamber. As for Ni product, thermal treatment shall be performed prior to the recovery. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 125±3°C (Class 1) Duration: 1000 ⁺⁴⁸ / ₄ hrs Applied voltage: Rated voltage×2 Recovery: 24±2 hrs of recovery under the standard condi- tion after the removal from test chamber.

Note 1 :For 105 type, specified in "High value". Note 2 :Thermal treatment (Multilayer): 1 hr of thermal treatment at 150 +0 /-10 °C followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement. Note 3 :Voltage treatment (Multilayer): 1 hr of voltage treatment under the specified temperature and voltage for testing followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement. Note 4 : 5 :The figure indicates typical inspection. Please refer to individual specifications. Note 6 :Some of the parts are applicable in rated voltage×1.5. Please refer to individual specifications. Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure. When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure.

Stages	Precautions	Technical considerations
Stages 1.Circuit Design	Precautions Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Voltage (Verification of Rated voltage) 1. The operating voltage for capacitors must always be lower than their rated values. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the capacitor's rated voltage. 2. Even if the applied voltage is lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit.	Technical considerations
2.PCB Design	 Pattern configurations (Design of Land-patterns) 1. When capacitors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect capacitor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. 	1.The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amourts.(larger fillets which extend above the component end terminations) Examples of improper pattern designs are also shown. (1) Recommended land dimensions for a typical chip capacitor land patterns for PCBs Land pattern Chip capacitor Chip capacitor Solder-resist Chip capacitor W Nonentered land dimensions for wave-soldering (unit: mm) Type 107 212 316 325 Size W 0.8 1.25 1.6 2.5 A 0.8~1.0 1.0~1.4 1.8~2.5 1.8~2.5 B 0.5~0.8 0.8~1.5 0.8~1.7 0.8~1.7 C 0.6~0.8 0.9~1.2 1.2~1.6 1.8~2.5
		Provide a second seco

Stages	Precautions		Technical consid	derations	
2.PCB Design		(2) Examples o	f good and bad solder applicat	lion	
		Items	Not recommended	Recommended	
		Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist	
			Component placement close to the chassis	Chassis Solder(for grounding)	Solder-resist
		Hand-soldering of leaded components near mounted components	Lead wire of component Soldering iron	Solder-resist	
		Horizontal component placement		Solder-resist	
	Pattern configurations (Capacitor layout on panelized [breakaway] PC boards) 1. After capacitors have been mounted on the boards, chips can	-		apacitor layout; SMD capacitors should be tresses from board warp or deflection.	
	be subjected to mechanical stresses in subsequent manufac-		Not recommended	Recommended	
	turing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD capacitors should be carefully performed to minimize stress	Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.	
	should be carefully performed to minimize stress.	of mechanical	stresses given will vary deper accommendations for better des	board, it should be noted that the amount ading on capacitor layout. The example sign.	

A Slit

procedure.

Magnitude of stress A>B = C>D>E

1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD capacitor layout must also consider the PCB splitting

PRECAUTIONS

Stages	Precautions		Technical consider	ations
3.Considerations for auto- matic placement	Adjustment of mounting machine1. Excessive impact load should not be imposed on the capacitors when mounting onto the PC boards.2. The maintenance and inspection of the mounters should be conducted periodically.	capacitors, cau before lowering (1)The lower limit board after corr (2)The pick-up pre (3)To reduce the a supporting pins	sing damage. To avoid this, the f the pick-up nozzle: of the pick-up nozzle should be a ecting for deflection of the board. essure should be adjusted betwee amount of deflection of the board c	n 1 and 3 N static loads. aused by impact of the pick-up nozzle, nder the PC board. The following dia-
		Single-sided mounting	Cracks	
		Double-sided mounting	Solder peeling - Cracks	Supporting pin-C
		cracking of the this, the monitor	capacitors because of mechanication of the width between the align	e nozzle height can cause chipping or al impact on the capacitors. To avoid ment pin in the stopped position, and pin should be conducted periodically.
	Selection of Adhesives 1. Mounting capacitors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded capacitor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. There- fore, it is imperative to consult the manufacturer of the adhe-	shrinkage perce on the capacitor to the board ma should be noted	entage of the adhesive and that of rs and lead to cracking. Moreover, ay adversely affect component pla d in the application of adhesives.	sistance. The difference between the the capacitors may result in stresses too little or too much adhesive applied acement, so the following precautions
	sives on proper usage and amounts of adhesive to use.	 a. The adhesive sl solder process. b. The adhesive s c. The adhesive s d. The adhesive s e. The adhesive s f. The adhesive n 	sive characteristics hould be strong enough to hold par hould have sufficient strength at h hould have good coating and thick hould be used during its prescribe hould harden rapidly nust not be contaminated. hould have excellent insulation ch	kness consistency. ed shelf life.
		(2)The recommen	hould not be toxic and have no en	lows;
		Figure a b c	212/316 case size 0.3mm 100 ~12 Adhesives should no	min 0 µm
		Amou	nt of adhesive A	ofter capacitors are bonded

Stages	Precautions	Technical considerations
4. Soldering	 Selection of Flux 1. Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1)Flux used should be with less than or equal to 0.1 wt% (equivelent to chroline) of halogenated content. Flux having a strong acidity content should not be applied. (2)When soldering capacitors on the board, the amount of flux applied should be controlled at the optimum level. (3)When using water-soluble flux, special care should be taken to properly clean the boards. 	 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the capacitors. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
	Soldering Temperature, time, amount of solder, etc. are specified in accor- dance with the following recommended conditions.	 1-1. Preheating when soldering Heating: Ceramic chip components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C. Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock.
	And please contact us about peak temperature when you use lead-free paste.	Recommended conditions for soldering [Reflow soldering] Temperature profile Temperature 0 decimal 0 de

Stages	Precautions	Technical considerations
4. Soldering		[Hand soldering] Temperature profile Temperature of the second
5.Cleaning	 Cleaning conditions 1. When cleaning the PC board after the capacitors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the capacitor's characteristics. 	 The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the capacitor or deteriorate the capacitor's outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the capacitors. (1)Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the capacitor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20 W/ℓ Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6.Post cleaning processes	 With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the harden- ing period or while left under normal storage conditions result- ing in the deterioration of the capacitor's performance. When a resin's hardening temperature is higher than the capacitor's operating temperature, the stresses generated by the excess heat may lead to capacitor damage or destruction. The use of such resins, molding materials etc. is not recom- mended. 	
7.Handling	 Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting capacitors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. Mechanical considerations 1. Be careful not to subject the capacitors to excessive mechanical shocks. (1)If ceramic capacitors are dropped onto the floor or a hard surface, they should not be used. (2)When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components. 	

Stages	Precautions	Technical considerations
8.Storage conditions	 Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40°C Humidity Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions capacitor electrode solderability decreases as time passes, so should be used within 6 months from the time of delivery. Ceramic chip capacitors should be kept where no chlorine or sulfur exists in the air. The capacitance value of high dielectric constant capacitors (type 2 &3) will gradually decrease with the passage of time, so this should be taken into consideration in the circuit design. If such a capacitance reduction occurs, a heat treatment of 150°C for 1hour will return the capacitance to its initial level.	1. If the parts are stored in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.