# 阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

# **Read Statement**

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .



# Professional Ceramic Capacitors - Class I, II and III

#### MIL-STD-202F

The professional ceramic disc capacitors were specially developed for applications in severe environmental conditions, high humidity, temperature, gas, vapor and solvents.

The capacitors are flame retardant epoxy coated, meeting UL 94-V0 flammability specifications. The capacitors are 100% screened on following electrical parameters:

Capacitance, loss factor, test voltage. After the 100% test, the capacitors are audited on its electrical and mechanical parameters with following AQL:

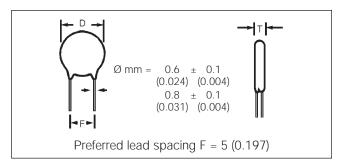
Electrical parameters: 0.065% level II Mechanical parameters: 0.65% level II

The capacitors withstand the following reliability essays:

Terminal strength: method 211 - condition A

Resistance to solvents: method 215

Resistance to soldering heat: method 210 - condition B


Solderability: method 208

Thermal shock: method 107 - condition A

Humidity (steady state): method 103 – condition D Life (at elevated ambient temperature): method 108 –

condition D

Operating temperature and storage: -55... +125° C



#### millimeters (inches)

| Lead Spacing | Digit 8 |   |
|--------------|---------|---|
| F            |         |   |
| 2.5 (0.100)  | D       | _ |
| 5 (0.200)    | А       | 0 |
| 6 (0.250)    | Е       | X |
| 7.5 (0.300)  | В       | R |
| 10 (0.400)   | С       | W |

#### **DIMENSIONS**

#### millimeters (inches)

| Digit 9<br>(ø)                     | D ± 2<br>(0.079) | T max.      | Available<br>Lead Spacing |
|------------------------------------|------------------|-------------|---------------------------|
| A 1pF 2.7 pF                       | 4.0 (0.157)      | 3.0 (0.118) | A,B,D,E,O,R               |
| A <sub>5.6pF</sub> N1500<br>8.2 pF | 4.0 (0.157)      | 3.0 (0.118) | A,B,D,E,O,R               |
| A Others                           | 4.0 (0.157)      | 3.0 (0.118) | A,B,D,E,O,R               |
| В                                  | 5.0 (0.197)      | 3.0 (0.118) | A,B,D,E,O,R,X             |
| С                                  | 6.0 (0.236)      | 3.0 (0.118) | A,B,C,D,E,O,R,X           |
| D                                  | 7.0 (0.276)      | 3.0 (0.118) | A,B,C,D,E,O,R,X           |
| E                                  | 8.0 (0.315)      | 3.0 (0.118) | A,B,C,D,E,O,R,X           |
| F                                  | 9.0 (0.354)      | 3.0 (0.118) | A,B,C,E,O,R,X             |
| G                                  | 10.0 (0.394)     | 3.0 (0.118) | A,B,C,E,O,R,X             |
| Н                                  | 11.0 (0.433)     | 3.0 (0.118) | A,B,C,E,O,R,W             |
| J                                  | 13.0 (0.512)     | 3.5 (0.138) | B,C,R,W                   |
| K                                  | 15.0 (0.591)     | 3.5 (0.138) | B,C,R,W                   |
| M                                  | 19.0 (0.748)     | 4.0 (0.157) | B,C                       |

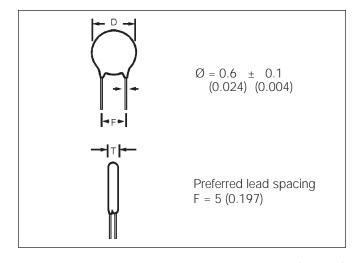
(E), (X), (W): upon request





# **General Specifications - Class III Professional**

#### **DIELECTRIC - CLASS III**


A thin dielectric layer is grown on a disc of conductive ceramic. Very large capacitances can be obtained due to reduced thickness of this barrier layer and its inherently high dielectric constant. Due its small dimensions, they are a less expensive replacement of multilayer ceramic or polyester capacitors.

#### **DIMENSIONS**

#### millimeters (inches)

| Digit 9<br>of P.N.<br>(ø) | D ± 2<br>(0.079) | T max.      | Available<br>Lead Spacing |
|---------------------------|------------------|-------------|---------------------------|
| А                         | 4.0 (0.157)      | 3.0 (0.118) | A,B,D,E,O,R               |
| В                         | 5.0 (0.197)      | 3.0 (0.118) | A,B,D,E,O,R,X             |
| С                         | 6.0 (0.236)      | 3.0 (0.118) | A,B,C,D,E,O,R,X           |
| D                         | 7.0 (0.276)      | 3.0 (0.118) | A,B,C,D,E,O,R,X           |
| Е                         | 8.0 (0.315)      | 3.0 (0.118) | A,B,C,D,E,O,R,X           |
| F                         | 9.0 (0.354)      | 3.0 (0.118) | A,B,C,E,O,R,X             |
| G                         | 10.0 (0.394)     | 3.0 (0.118) | A,B,C,E,O,R,X             |
| Н                         | 11.0 (0.433)     | 3.0 (0.118) | A,B,C,E,O,R,W             |
| J                         | 13.0 (0.512)     | 3.5 (0.138) | B,C,R,W                   |
| K                         | 15.0 (0.591)     | 4.0 (0.157) | B,C,R,W                   |

(E), (X), (W): upon request



#### millimeters (inches)

| Lead Spacing | Digit 8 of P.N. |   |
|--------------|-----------------|---|
| F            |                 |   |
| 2.5 (0.100)  | D               | _ |
| 5 (0.200)    | А               | 0 |
| 6 (0.250)    | E               | Х |
| 7.5 (0.300)  | В               | R |
| 10 (0.400)   | С               | W |

#### PERFORMANCE CHARACTERISTICS CLASS III

| Measured at                            | 1.0 kHz / 0.1 Vrms / 25°C                                                                                                    |                                                                                                   |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Dissipation<br>Factor                  | $C_R \le 22 \text{ nF} \rightarrow \text{Y5V, Y5U} \le 7.5\%$<br>$C_R > 22 \text{ nF} \rightarrow \text{Y5V, Y5P} \le 5.0\%$ |                                                                                                   |  |
| Capacitance<br>Tolerance               | $Y5P \rightarrow \pm 20\% / -20 +50\%$<br>$Y5U \rightarrow \pm 20\% / -20 +80\%$<br>$Y5V \rightarrow \pm 20\% / -20 +80\%$   |                                                                                                   |  |
| Climatic<br>Category                   | 55 / 085 / 56                                                                                                                |                                                                                                   |  |
| Insulation                             | Y5P                                                                                                                          | ≥12 MΩ                                                                                            |  |
| Resistance<br>@ V <sub>R</sub>         | Y5U                                                                                                                          | 4.7 nF100 nF $\rightarrow$ $\geq$ 10 M $_{\Omega}$<br>200 nF $\rightarrow$ $\geq$ 1 M $_{\Omega}$ |  |
|                                        | Y5V                                                                                                                          | ≥ 100 M <sub>Ω</sub>                                                                              |  |
| Dielectric Strength<br>NOTE: Charging  | Between<br>leads                                                                                                             | Vt = 1.25 V <sub>R</sub>                                                                          |  |
| current limited<br>to 50 mA            | Body $V_R = 25V \text{ Vt} = 100V (DC)$<br>insulation $V_R = 50V \text{ Vt} = 150V (DC)$                                     |                                                                                                   |  |
| Operating<br>Temperature<br>Range (°C) |                                                                                                                              | -55 +125 Epoxy Coated                                                                             |  |

Note: Damp Heat Steady State: 90... 95% R.H. 40°C / 21 days. No voltage to be applied.



# Disc Ceramic Capacitors Dimension Table Barrier Layer Capacitors - Class III Professional



#### **EPOXY COATED - CAPACITANCE VS. DISC DIAMETER**

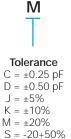
#### millimeters (inches)

| Class III                          | Δ C/C (max.)<br>±12% | Range<br>-30 +85°C | Δ C/C (max.)<br>+30 -65% | Range<br>-30 +85°C | Δ C/C (max.) Range<br>+22 -85% -30 +85' | °C |
|------------------------------------|----------------------|--------------------|--------------------------|--------------------|-----------------------------------------|----|
| Temp.<br>Coefficient               | Υ                    | 5P                 | Y                        | 5U                 | Y5V                                     |    |
| Digits 1,2,3<br>of P.N.            | 6WF                  | 6WH                | 6YF                      | 6YH                | 6ZH                                     |    |
| Rated<br>Voltage (V <sub>p</sub> ) | 25                   | 50                 | 25                       | 50                 | 50                                      |    |
| C <sub>R</sub> (pF)                |                      |                    |                          |                    |                                         |    |
| 4,700                              | 4.0 (0.157)          | 4.0 (0.157)        | 4.0 (0.157)              | 4.0 (0.157)        |                                         |    |
| 10,000                             | 6.0 (0.236)          | 6.0 (0.236)        | 4.0 (0.157)              | 4.0 (0.137)        |                                         |    |
| 22,000                             | 7.0 (0.276)          | 8.0 (0.315)        | 5.0 (0.197)              | 6.0 (0.236)        | 4.0 (0.157)                             |    |
| 33,000                             | 8.0 (0.315)          | 9.0 (0.354)        | 6.0 (0.236)              | 7.0 (0.276)        |                                         |    |
| 47,000                             | 10.0 (0.394)         | 11.0 (0.433)       |                          |                    |                                         |    |
| 50,000                             | 10.0 (0.394)         | _                  | 7.0 (0.276)              | 8.0 (0.315)        | 5.0 (0.197)                             |    |
| 68,000                             | 11.0 (0.433)         | 13.0 (0.512)       |                          |                    | 5.0 (0.197)                             |    |
| 100,000                            | 13.0 (0.512)         | 15.0 (0.591)       |                          |                    | 7.0 (0.276)                             |    |
| 200,000                            | _                    | _                  | 13.0 (0.512)             | _                  |                                         |    |

Y5U, Y5V - Preferences

Diameter (φ) = 9th Part Number Digit






#### **Ordering Code**

#### **HOW TO ORDER** 5 0 Q 222 **General Purpose Professional Switch Mode** Rated Voltage (dc) Capacitance 222 = 2.2 nF Safety D = 16V 5A = NP0/I6A = NPO / IF = 25V\*5B = P100 / I \*6B = P100 / I H = 50V\*5C = N150 / I \*6C = N150 / IK = 100V\*5D = N220 / I \*5E = N330 / I \*6D = N220 / IN = SAFETY Capacitance = TPC code Capacitance = TPC code \*6E = N330 / I O = SAFETY \*5F = N470 / I100pF = 101 1 pF = 1R0\*6F = N470 / I 5G = N750 / IQ = 500V1.2pF = 1R2120pF = 1216G = N750 / IR = 1000V1.5pF = 1R5 1.8pF = 1R8 150pF = 151 180pF = 181 5H = N1500 / I\*6H = N1500 / I S = 2000V\*5I = N2200 / I \*6I = N2200 / IT = 3000V\*5J = N4700 / I2.2pF = 2R2220pF = 2216J = N4700 / IU = 4000V5K = SL2.7pF = 2R7270pF = 27161 = SAFETY 5M = Y5E / II V = SAFETY3.9pF = 3R9330pF = 33162 = SAFETY W = 5000V4.7pF = 4R7390pF = 391 5N = Y5F / II65 = SAFETY 50 = Y5P / II \*X = 6000V5.6pF = 5R6470pF = 471\*5P = Y5R / II 67 = Y5U / SM\*Y = 7500V6.8pF = 6R8560pF = 56168 = Y5V / SM8.2pF = 8R2\*5Q = Y5T / II 680pF = 681 6L = Y5P / SM5S = Y5U / II 10pF = 100820pF = 8216M = X5E / II5T = Y5V / II12pF = 120 15pF = 150 1nF = 102 1.2nF = 122 6N = X5F / II5U = Z5V / II60 = X5P / II\*5V = Z4V / III18pF = 180 1.8nF = 182\*6P = X5R / II 5W = Y5P / III22pF = 2202.2nF = 2225Y = Y5U / III \*6Q = X5T / II27pF = 2702.7nF = 2726S = X5U / II5Z = Y5V / III33pF = 3303.3nF = 3326T = X5V / II3.9nF = 39239pF = 3906U = Z5V / II47pF = 4704.7nF = 472\*6V = Z4V / III 6W = Y5P / III 56pF = 5605.6nF = 56268pF = 6806.8nF = 6826Y = Y5U / III 82pF = 8208.2nF = 8226Z = Y5V / III10nF = 10315nF = 15322nF = 22333nF = 333\*Upon Request 47nF = 473100nF = 104200nF = 204







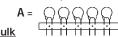
Z = -20 + 80%

P = 0+100%

Ε

#### **Capacitor Diameter**

± 2 (0.079) A = 4 (0.157)B = 5 (0.197)C = 6 (0.236)D = 7 (0.276)E = 8 (0.315)F = 9 (0.354)G = 10(0.394)H = 11 (0.433)J = 13 (0.512)K = 15 (0.591) $M^* = 19 (0.748)$ 

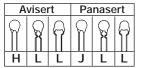

\*Wire 0.8 (0.031) recommended

|                                    |            |           | î         | Wire 0.8 (0.0 |
|------------------------------------|------------|-----------|-----------|---------------|
| Lead Forming                       |            | $\bigcap$ | $\bigcap$ |               |
| mm                                 | inches     |           |           |               |
| 2.5 ±0.5                           | .1 ± .025  | D         | -         | -             |
| 5 +0.6<br>-0.2                     | .2 ± .025  | А         | 0         | N             |
| 6 <sup>+0.6</sup> <sub>-0.2</sub>  | .25 ± .025 | E         | Х         | -             |
| 7.5 +1<br>-0.5                     | .3 ± .05   | В         | R         | Q             |
| 10 <sup>+0.5</sup> <sub>-1.0</sub> | .4 ± .05   | С         | W         | -             |
| 125 +1                             | 5 + 05     | Р         | _         | _             |

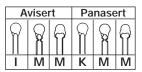




#### **Cardboard Strips**




**Bulk** 


 $E = 5 (0.197) \pm 1 (0.039)$  free wire length  $C = 10 (0.394) \pm 1 (0.039)$  free wire length  $D = 25 (0.984) \pm 1 (0.039)$  free wire length

#### **Taping**









#### Finishing

Diam  $\leq$ 9 (0.354) and F = 5.00 (0.197)



For every other:

Low Voltage

General ) Q = Waxed phenolic Purpose A = Phenolic

S = Epoxy (Professional) cap. diameter ≤ 8 (0.315)

D = Epoxy (Professional) cap. diameter > 8 (0.315)

#### **High Voltage**



= Measured from the center of leads

C = Epoxy wire diameter

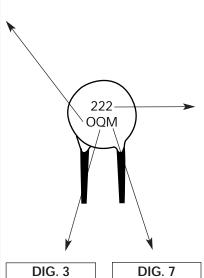
0.6  $(0.024)^{\pm} (0.004)$ 

I = Epoxy wire diameter

8.0 0.1  $(0.031)^{\pm} (0.004)$ 

L = Phenolic wire diameter

0.6  $(0.024)^{\pm} (0.004)$ 


Please note that not all code combinations are either possible or available.

# 

# Marking

| DIG. 2          |               |  |  |  |
|-----------------|---------------|--|--|--|
| О               |               |  |  |  |
| TC / (          | Class         |  |  |  |
| General Purpose | Professional  |  |  |  |
| A = NP0 / I     | A = NP0 / I   |  |  |  |
| *B = P100 / I   | B = P100 / I  |  |  |  |
| *C = N150 / I   | C = N150 / I  |  |  |  |
| *D = N220 / I   | D = N220 / I  |  |  |  |
| *E = N330 / I   | E = N330 / I  |  |  |  |
| *F = N470 / I   | F = N470 / I  |  |  |  |
| G = N750 / I    | G = N750 / I  |  |  |  |
| H = N1500 / I   | H = N1500 / I |  |  |  |
| *I = N2200 / I  | I = N2200 / I |  |  |  |
| *J = N4700 / I  | J = N4700 / I |  |  |  |
| K = SL          | 7 = Y5U / SM  |  |  |  |
| M = Y5E / II    | 8 = Y5V / SM  |  |  |  |
| N = Y5F / II    | L = Y5P / SM  |  |  |  |
| O = Y5P / II    | M = X5E / II  |  |  |  |
| P = Y5R / II    | N = X5F / II  |  |  |  |
| Q = Y5T / II    | O = X5P / II  |  |  |  |
| S = Y5U / II    | P = X5R / II  |  |  |  |
| T = Y5V / II    | Q = X5T / II  |  |  |  |
| U = Z5V / II    | S = X5U / II  |  |  |  |
| V = Z4V / III   | T = X5V / II  |  |  |  |
| *W = Y5P / II   | U = Z5V / II  |  |  |  |
| *X = Y5R / II   | V = Z4V / III |  |  |  |
| Y = Y5U / II    | W = Y5P / III |  |  |  |
| Z = Y5V / II    | X = Y5R / III |  |  |  |
|                 | Y = Y5U / III |  |  |  |
|                 | Z = Y5V / III |  |  |  |
|                 |               |  |  |  |
|                 |               |  |  |  |
|                 |               |  |  |  |

Logo: Only in diam. ≥ 6mm



D = 16V F = 25V H = 50V K = 100V Q = 500V

R = 1000V

S = 2000V

T = 3000V

U = 4000VW = 5000V

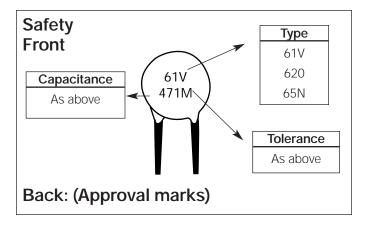
X = 6000V

Y = 7500V

| M |    |       |      |  |
|---|----|-------|------|--|
|   |    |       |      |  |
|   | To | olera | nce  |  |
| С | =  | ±0.2  | 25pF |  |
| D | =  | ±0.5  | рF   |  |
| J | =  | ±5%   | )    |  |
| Κ | =  | ±10°  | %    |  |
| M | =  | ±20°  | %    |  |

S = -20 + 50%

Z = -20 + 80%


P = 0 + 100%

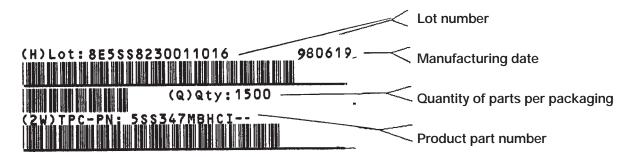
| Capacitance | EIA         |
|-------------|-------------|
| 1pF = 109   | 100pF = 101 |
| 1.2pF = 129 | 120pF = 121 |
| 1.5pF = 159 | 150pF = 151 |
| 1.8pF = 189 | 180pF = 181 |
| 2.2pF = 229 | 220pF = 221 |
| 2.7pF = 279 | 270pF = 271 |
| 3.9pF = 399 | 390pF = 391 |
| 4.7pF = 479 | 470pF = 471 |
| 5.6pF = 569 | 560pF = 561 |
| 6.8pF = 689 | 680pF = 681 |
| 8.2pF = 829 | 820pF = 821 |
| 10pF = 100  | 1nF = 102   |
| 12pF = 120  | 1.2nF = 122 |
| 15pF = 150  | 1.8nF = 182 |
| 18pF = 180  | 2.2nF = 222 |
| 22pF = 220  | 2.7nF = 272 |
| 27pF = 270  | 3.9nF = 392 |
| 39pF = 390  | 4.7nF = 472 |
| 47pF = 470  | 5.6nF = 562 |
| 56pF = 560  | 6.8nF = 682 |
| 68pF = 680  | 8.2nF = 822 |
| 82pF = 820  | 10nF = 103  |
|             | 15nF = 153  |
|             | 22nF = 223  |
|             | 33nF = 333  |
|             | 47nF = 473  |
|             | 100nF = 104 |
|             | 200nF = 204 |

\*Upon Request

TC – Temperature coefficient.

DIG – for better understanding, check pages 3 and 4.






### **Packaging**



#### **IDENTIFICATION AND TRACEABILITY**

On all TPC ceramic capacitors packages, you will find a bar code label with the following information:



#### TAPED PARTS QUANTITY TABLE

#### millimeters (inches)

| Rated Voltage                                                                     | Diameter           | Quantities |      |
|-----------------------------------------------------------------------------------|--------------------|------------|------|
| (Vr)                                                                              | D                  | Ammopack   | Reel |
| Vr <= 500V                                                                        | D ≤ 7 (0.276)      | 2000       | 2500 |
|                                                                                   | 7 < D ≤ 11 (0.433) | 2000       | 2000 |
| 500V <vr<=2kv< th=""><th>D ≤ 11 (0.433)</th><th>1500</th><th>2000</th></vr<=2kv<> | D ≤ 11 (0.433)     | 1500       | 2000 |
| 2KV <vr=5kv< th=""><th>D ≤ 11 (0.433)</th><th>1000</th><th>1500</th></vr=5kv<>    | D ≤ 11 (0.433)     | 1000       | 1500 |

#### CARDBOARD STRIPS QUANTITY TABLE

#### millimeters (inches)

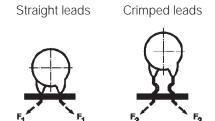
| Rated Voltage                                                                    | Diameter                        | Lead Space    |             |
|----------------------------------------------------------------------------------|---------------------------------|---------------|-------------|
| (Vr)                                                                             | D                               | < = 5 (0.197) | > 5 (0.197) |
| Vr <= 500V                                                                       | D ≤ 8 (0.315)                   | 2500          | 1500        |
|                                                                                  | 8 (0.315) ≦ D≦ 11 (0.433)       | 1500          | -           |
|                                                                                  | 8 (0.315) ≦ D≦ 13 (0.512)       | -             | 1000        |
|                                                                                  | 11 (0.433) ≦ D≦ 15 (0.591)      | 1000          | -           |
|                                                                                  | 13 (0.512) ≦ D≦ 19 (0.748)      | -             | 500         |
|                                                                                  | D ≤ 19 (0.748)                  | 500           | -           |
| 500V <vr<=2kv< td=""><td>D ≤ 9 (0.354)</td><td>1500</td><td>1000</td></vr<=2kv<> | D ≤ 9 (0.354)                   | 1500          | 1000        |
|                                                                                  | 9 (0.354) ≤ D ≤ 11 (0.433)      | -             | 1000        |
|                                                                                  | 9 (0.354) ≤ D ≤ 13 (0.512)      | 1000          | -           |
|                                                                                  | 11 (0.433) ≦ D ≦ 19 (0.748)     | -             | 500         |
|                                                                                  | 13 (0.512) ≤ D ≤ 19 (0.748)     | 500           | -           |
| 2KV <vr<=5kv< td=""><td>D ≤ 9 (0.354)</td><td>1500</td><td>-</td></vr<=5kv<>     | D ≤ 9 (0.354)                   | 1500          | -           |
| Safety 65N 62O                                                                   | D ≤ 11 (0.433)                  | -             | 1000        |
|                                                                                  | D ≤ 13 (0.512)                  | 500           | 500         |
| Safety                                                                           | D ≤ 6 (0.236)                   | 1500          | 1500        |
| 61V                                                                              | $7 (0.275) \le D \le 9 (0.354)$ | 1000          | 1000        |
|                                                                                  | 9 (0.354) ≦ D                   | 500           | 500         |

Quantities for other package alternative, upon request.





# **Tape and Reel Specifications**


There are two types of taped disc ceramic capacitors: Straight or crimped leads.

Both types can be shipped on reels or ammopack.

The standard packaging quantities are shown bellow:

# Fig. 1 Fig. 2 Fig. 3 Fig. 2 Fig. 3 Carimbo Marking 1,5 max.

#### millimeters (inches)



Maximum pull force during insertion and lead cut

|                               | F <sub>1</sub> | $F_{\scriptscriptstyle 2}$ |
|-------------------------------|----------------|----------------------------|
| $4 (0.157) \le D < 6 (0.236)$ | 12N            | 20N                        |
| D ≥ 6 (0.236)                 | 20N            | 25N                        |

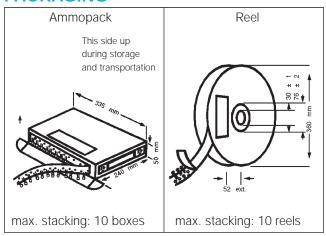
| Digit 11   | Available Tapings                      | Digit 9 |
|------------|----------------------------------------|---------|
| L<br>M     | Sizes 4 (0.157) ≤ D ≤ 11 (0.433)       | A H     |
| J H<br>K I | Sizes $6 (0.236) \le D \le 11 (0.433)$ | C H     |

#### TPC Code Digit 11

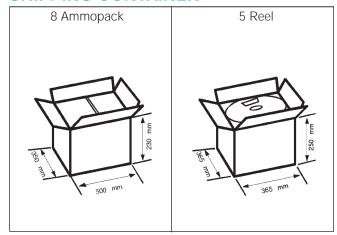
| Packaging | Avisert                            | Panasert                            |  |
|-----------|------------------------------------|-------------------------------------|--|
| Reel      | H L L L FIGURE 1 FIGURE 2 FIGURE 3 | FIGURE 1 FIGURE 2 FIGURE 3          |  |
| Ammopack  | FIGURE 1 FIGURE 2 FIGURE 3         | K M M<br>FIGURE 1 FIGURE 2 FIGURE 3 |  |

Figure 2: Inside Crimp 100V... 1000V Figure 3: Outside Crimp 1000V




# 

# **Tape and Reel Specifications**


#### millimeters (inches)

|                                              |                | Straight Leads                      |                 | Crimped            |
|----------------------------------------------|----------------|-------------------------------------|-----------------|--------------------|
|                                              |                | Figure 1                            |                 | Figure 2 & 3       |
| Description of Symbols                       |                | A (Avisert)                         | P (Panasert)    | Avisert & Panasert |
| Crimp angle                                  | ∝              | _                                   | _               | 20°45°             |
| Crimp length                                 | С              | _                                   | _               | 1.7 min.           |
| Lead diameter                                | d              |                                     | $0.60 \pm 0.1$  |                    |
| Disc diameter                                | D              | 11 max.                             |                 |                    |
| Lead hole diameter                           | Do             | 4.0 ± 0.2                           |                 |                    |
| Disc thickness                               | Т              | See Catalog                         |                 |                    |
| Lead spacing                                 | F              | 5.0 <sup>+0.6</sup> <sub>-0.2</sub> |                 |                    |
| Component alignment, front-rear              | Δh             | 0 ± 1                               |                 |                    |
| Height of component from tape center         | Н              | 19.5 ± 0.5                          | 16.5 ± 0.5 - 0  | _                  |
| Height from tape center to crimp             | Но             | _                                   | _               | 16 + 0.5 - 0       |
| Component height                             | H1             | 32.25 max.                          | >23.5<br><32.25 | 32.25 max.         |
| Distance from component leads to tape bottom | $\ell_1$       | 12 max.                             |                 |                    |
| Tape width                                   | W              | 18 +1 -0.5                          |                 |                    |
| Bonding tape width                           | $W_3$          | 5.5 min.                            |                 |                    |
| Feed hole position                           | W <sub>1</sub> | 9.0 ± 0.5                           |                 |                    |
| Pitch between discs                          | Р              | 12.7 ± 1                            |                 |                    |
| Feed hole pitch                              | Ро             | 12.7 ± 0.3                          |                 |                    |
| Hole center to lead                          | P1             | 3.85 ± 0.7                          |                 |                    |
| Feed hole center to component center         | P2             | 6.35 ± 1                            |                 |                    |
| Tape + bonding tape thickness                | t              | 0.7 ± 0.2                           |                 |                    |
| Total tape thickness. including lead         | t <sub>2</sub> | 1.5 max.                            |                 |                    |
|                                              |                | ·                                   |                 |                    |

#### **PACKAGING**



#### **SHIPPING CONTAINER**



