阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

43A, 1200V, NPT Series N-Channel IGBT

The HGTG11N120CN, HGTP11N120CN, and HGT1S11N120CNS are Non-Punch Through (NPT) IGBT designs. They are new members of the MOS gated high voltage switching IGBT family. IGBTs combine the best features of MOSFETs and bipolar transistors. This device has the high input impedance of a MOSFET and the low onstate conduction loss of a bipolar transistor.
The IGBT is ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

Formerly Developmental Type TA49291.

Ordering Information

PART NUMBER	PACKAGE	BRAND
HGTG11N120CN	TO-247	G11N120CN
HGTP11N120CN	TO-220AB	11N120CN
HGT1S11N120CNS	TO-263AB	11 N 120 CN

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in Tape and Reel, i.e., HGT1S11N120CNS9A.

Symbol

Features

- 43A, $1200 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$
- 1200 V Switching SOA Capability
- Typical Fall Time. 340ns at $\mathrm{T}_{J}=150^{\circ} \mathrm{C}$
- Short Circuit Rating
- Low Conduction Loss
- Avalanche Rated
- Thermal Impedance SPICE Model Temperature Compensating SABER ${ }^{\text {M }}$ Model www.fairchildsemi.com
- Related Literature
- TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Packaging

JEDEC STYLE TO-247

JEDEC TO-220AB (ALTERNATE VERSION)

JEDEC TO-263AB

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

		HGTG11N120CN HGTP11N120CN HGT1S11N120CNS	UNITS
Collector to Emitter Voltage	$\mathrm{BV}_{\text {CES }}$	1200	V
Collector Current Continuous			
At $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C} 25}$	43	A
At $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$. $\mathrm{l}_{\mathrm{C} 110}$	22	A
Collector Current Pulsed (Note 1)	${ }^{\text {CM }}$	80	A
Gate to Emitter Voltage Continuous.	. $\mathrm{V}_{\mathrm{GES}}$	± 20	V
Gate to Emitter Voltage Pulsed	$V_{G E M}$	± 30	V
Switching Safe Operating Area at $\mathrm{T}_{J}=150^{\circ} \mathrm{C}$ (Figure 2)	SSOA	55A at 1200 V	
Power Dissipation Total at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\ldots \mathrm{P}_{\mathrm{D}}$	298	W
Power Dissipation Derating $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$		2.38	W/ ${ }^{\circ} \mathrm{C}$
Forward Voltage Avalanche Energy (Note 2).	E $\mathrm{E}_{\text {AV }}$	80	mJ
Operating and Storage Junction Temperature Range .	TJ, TSTG	-55 to 150	${ }^{\circ} \mathrm{C}$
Maximum Lead Temperature for Soldering			
Leads at 0.063in (1.6mm) from case for 10 s .	. T_{L}	300	${ }^{\circ} \mathrm{C}$
Package Body for 10s, see Tech brief 334.	. ${ }^{\text {ppkg }}$	260	${ }^{\circ} \mathrm{C}$
Short Circuit Withstand Time (Note 3) at $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$.	...tsc	8	$\mu \mathrm{s}$
Short Circuit Withstand Time (Note 3) at $\mathrm{V}_{\mathrm{GE}}=12 \mathrm{~V}$.	.tsc	15	$\mu \mathrm{s}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Pulse width limited by maximum junction temperature.
2. $I_{C E}=20 \mathrm{~A}, \mathrm{~L}=400 \mu \mathrm{H}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
3. $\mathrm{V}_{\mathrm{CE}(\mathrm{PK})}=840 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=10 \Omega$.

Electrical Specifications $T_{C}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Collector to Emitter Breakdown Voltage	BV ${ }_{\text {CES }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		1200	-	-	V
Emitter to Collector Breakdown Voltage	$B V_{E C S}$	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		15	-	-	V
Collector to Emitter Leakage Current	ICES	$\mathrm{V}_{\mathrm{CE}}=1200 \mathrm{~V}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	-	250	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	-	250	-	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	3	mA
Collector to Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=11 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	2.1	2.4	V
			$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	2.8	3.5	V
Gate to Emitter Threshold Voltage	$\mathrm{V}_{\mathrm{GE}(\mathrm{TH})}$	$\mathrm{I}_{\mathrm{C}}=90 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$		6.0	6.8	-	V
Gate to Emitter Leakage Current	$I_{\text {GES }}$	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$		-	-	± 250	nA
Switching SOA	SSOA	$\begin{aligned} & \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=10 \Omega, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{~L}=400 \mu \mathrm{H}, \mathrm{~V}_{\mathrm{CE}(\mathrm{PK})}=1200 \mathrm{~V} \end{aligned}$		55	-	-	A
Gate to Emitter Plateau Voltage	$\mathrm{V}_{\text {GEP }}$	$\mathrm{I}_{\mathrm{C}}=11 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V}$		-	10.4	-	V
On-State Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{I} \mathrm{I}=11 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	-	100	120	nC
			$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	130	150	nC

Electrical Specifications $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Current Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \text { I }}$	$\begin{aligned} & \text { IGBT and Diode at } \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{CE}}=11 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=960 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=10 \Omega \\ & \mathrm{~L}=2 \mathrm{mH} \\ & \text { Test Circuit (Figure 18) } \end{aligned}$	-	23	26	ns
Current Rise Time	tr_{r}		-	12	16	ns
Current Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		-	180	240	ns
Current Fall Time	t_{fl}		-	190	230	ns
Turn-On Energy (Note 4)	EON1		-	0.4	0.5	mJ
Turn-On Energy (Note 4)	EON2		-	0.95	1.3	mJ
Turn-Off Energy (Note 5)	EOFF		-	1.3	1.6	mJ
Current Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{l}}$	$\begin{aligned} & \text { IGBT and Diode at } T_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{CE}}=11 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=960 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=10 \Omega \\ & \mathrm{~L}=2 \mathrm{mH} \\ & \text { Test Circuit (Figure 18) } \end{aligned}$	-	21	24	ns
Current Rise Time	tr_{r}		-	12	16	ns
Current Turn-Off Delay Time	$t_{d \text { (OFF) }}$		-	210	280	ns
Current Fall Time	t_{fl}		-	340	400	ns
Turn-On Energy (Note 4)	EON1		-	0.45	0.6	mJ
Turn-On Energy (Note 4)	EON2		-	1.9	2.5	mJ
Turn-Off Energy (Note 5)	EOFF		-	2.1	2.5	mJ
Thermal Resistance Junction To Case	$\mathrm{R}_{\text {日JC }}$		-	-	0.42	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:
4. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E EN1 is the turn-on loss of the IGBT only. EON2 is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T_{J} as the IGBT. The diode type is specified in Figure 18.
5. Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (ICE = OA). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

Typical Performance Curves Unless Otherwise Specified

FIGURE 1. DC COLLECTOR CURRENT vs CASE TEMPERATURE

FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO EMITTER CURRENT

FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE

FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

FIGURE 4. SHORT CIRCUIT WITHSTAND TIME

FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE

FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 13. TRANSFER CHARACTERISTIC

FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 12. FALL vs COLLECTOR TO EMITTER CURRENT

FIGURE 14. GATE CHARGE WAVEFORMS

Typical Performance Curves Unless Otherwise Speified (Continued)

FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE

FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE

FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE

Test Circuit and Waveforms

FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT

FIGURE 19. SWITCHING TEST WAVEFORMS

Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:

1. Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as "ECCOSORBDTM LD26" or equivalent.
2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage rating of $\mathrm{V}_{\mathrm{GEM}}$. Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
7. Gate Protection - These devices do not have an internal monolithic Zener diode from gate to emitter. If gate protection is required an external Zener is recommended.

Operating Frequency Information

Operating frequency information for a typical device (Figure 3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (ICE) plots are possible using the information shown for a typical unit in Figures 5, 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows $f_{\text {MAX1 }}$ or $f_{\text {MAX2 }}$; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.
$f_{M A X 1}$ is defined by $f_{M A X 1}=0.05 /\left(t_{d(O F F) I}+t_{d(O N) I}\right)$. Deadtime (the denominator) has been arbitrarily held to 10\% of the on-state time for a 50% duty factor. Other definitions are possible. $\mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \mid}$ and $\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mid}$ are defined in Figure 19. Device turn-off delay can establish an additional frequency limiting condition for an application other than $\mathrm{T}_{\mathrm{JM}} \cdot \mathrm{t}_{\mathrm{d}(\mathrm{OFF})}$ I is important when controlling output ripple under a lightly loaded condition.
$f_{\text {MAX2 }}$ is defined by $f_{\text {MAX2 }}=\left(P_{D}-P_{C}\right) /\left(E_{\text {OFF }}+E_{O N 2}\right)$. The allowable dissipation $\left(P_{D}\right)$ is defined by $P_{D}=\left(T_{J M}-T_{C}\right) / R_{\theta J C}$. The sum of device switching and conduction losses must not exceed P_{D}. A 50\% duty factor was used (Figure 3) and the conduction losses $\left(\mathrm{P}_{\mathrm{C}}\right)$ are approximated by $\mathrm{P}_{\mathrm{C}}=\left(\mathrm{V}_{\mathrm{CE}} \times \mathrm{I}_{\mathrm{CE}}\right) / 2$.
$\mathrm{E}_{\mathrm{ON} 2}$ and $\mathrm{E}_{\mathrm{OFF}}$ are defined in the switching waveforms shown in Figure 19. $\mathrm{E}_{\mathrm{ON} 2}$ is the integral of the instantaneous power loss ($I_{C E} \times V_{C E}$) during turn-on and $E_{\text {OFF }}$ is the integral of the instantaneous power loss ($\mathrm{I}_{\mathrm{CE}} \times \mathrm{V}_{\mathrm{CE}}$) during turn-off. All tail losses are included in the calculation for EOFF; i.e., the collector current equals zero (ICE = 0).

