阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

Preferred Device

Programmable Unijunction Transistor

Programmable Unijunction Transistor Triggers

Designed to enable the engineer to "program" unijunction characteristics such as $R_{BB},\,\eta,\,I_{V},\,$ and I_{P} by merely selecting two resistor values. Application includes thyristor–trigger, oscillator, pulse and timing circuits. These devices may also be used in special thyristor applications due to the availability of an anode gate. Supplied in an inexpensive TO–92 plastic package for high–volume requirements, this package is readily adaptable for use in automatic insertion equipment.

- Programmable R_{BB}, η, I_V and I_P
- Low On–State Voltage 1.5 Volts Maximum @ I_F = 50 mA
- Low Gate to Anode Leakage Current 10 nA Maximum
- High Peak Output Voltage 11 Volts Typical
- Low Offset Voltage 0.35 Volt Typical (R_G = 10 k ohms)
- Device Marking: Logo, Device Type, e.g., 2N6027, Date Code

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
*Power Dissipation Derate Above 25°C	P _F 1/θ _{JA}	300 4.0	mW mW/°C
*DC Forward Anode Current Derate Above 25°C	ΙΤ	150 2.67	mA mA/°C
*DC Gate Current	IG	±50	mA
Repetitive Peak Forward Current 100 μs Pulse Width, 1% Duty Cycle *20 μs Pulse Width, 1% Duty Cycle	ITRM	1.0 2.0	Amps
Non–Repetitive Peak Forward Current 10 μs Pulse Width	ITSM	5.0	Amps
*Gate to Cathode Forward Voltage	VGKF	40	Volts
*Gate to Cathode Reverse Voltage	V _{GKR}	-5.0	Volts
*Gate to Anode Reverse Voltage	VGAR	40	Volts
*Anode to Cathode Voltage ⁽¹⁾	VAK	±40	Volts
Operating Junction Temperature Range	TJ	-50 to +100	°C
*Storage Temperature Range	T _{stg}	-55 to +150	°C

*Indicates JEDEC Registered Data

(1) Anode positive, R_{GA} = 1000 ohms Anode negative, R_{GA} = open

ON Semiconductor

http://onsemi.com

PUTs 40 VOLTS 300 mW

TO-92 (TO-226AA) CASE 029 STYLE 16

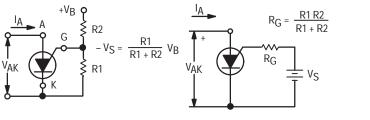
PIN ASSIGNMENT				
1 Anode				
2	Gate			
3	Cathode			

ORDERING INFORMATION

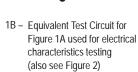
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

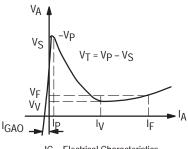
Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

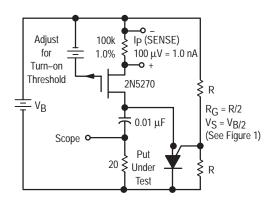

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	75	°C/W
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	200	°C/W
Maximum Lead Temperature for Soldering Purposes (<1/16" from case, 10 secs max)	TL	260	°C

ELECTRICAL CHARACTERISTICS ($T_C = 25$ °C unless otherwise noted.)


Characteristic	Fig. No.	Symbol	Min	Тур	Max	Unit	
*Peak Current $(V_S = 10 \text{ Vdc}, R_G = 1 \text{ M}\Omega)$ $(V_S = 10 \text{ Vdc}, R_G = 10 \text{ k ohms})$	2N6027 2N6028 2N6027 2N6028	2,9,11	lp	_ _ _ _	1.25 0.08 4.0 0.70	2.0 0.15 5.0 1.0	μА
*Offset Voltage $(V_S = 10 \text{ Vdc}, R_G = 1 \text{ M}\Omega)$ $(V_S = 10 \text{ Vdc}, R_G = 10 \text{ k ohms})$	2N6027 2N6028 (Both Types)	1	VT	0.2 0.2 0.2	0.70 0.50 0.35	1.6 0.6 0.6	Volts
*Valley Current $(V_S = 10 \text{ Vdc}, R_G = 1 \text{ M}\Omega)$ $(V_S = 10 \text{ Vdc}, R_G = 10 \text{ k ohms})$ $(V_S = 10 \text{ Vdc}, R_G = 200 \text{ ohms})$	2N6027 2N6028 2N6027 2N6028 2N6027 2N6028	1,4,5	IV	— 70 25 1.5 1.0	18 18 150 150 —	50 25 — — — —	μA mA
*Gate to Anode Leakage Current (V _S = 40 Vdc, T _A = 25°C, Cathode Open) (V _S = 40 Vdc, T _A = 75°C, Cathode Open)		_	I _{GAO}	_ _	1.0 3.0	10 —	nAdc
Gate to Cathode Leakage Current (V _S = 40 Vdc, Anode to Cathode Shorted)		_	^I GKS	_	5.0	50	nAdc
*Forward Voltage (I _F = 50 mA Peak)(1)		1,6	٧F	_	0.8	1.5	Volts
*Peak Output Voltage $(V_G = 20 \text{ Vdc}, C_C = 0.2 \mu\text{F})$		3,7	Vo	6.0	11	_	Volt
Pulse Voltage Rise Time (V _B = 20 Vdc, C _C = 0.2 μF)		3	t _r	_	40	80	ns


^{*}Indicates JEDEC Registered Data

⁽¹⁾ Pulse Test: Pulse Width $\leq 300~\mu sec,~Duty~Cycle \leq 2\%.$


1A - Programmable Unijunction with "Program" Resistors R1 and R2

IC - Electrical Characteristics

Figure 1. Electrical Characterization

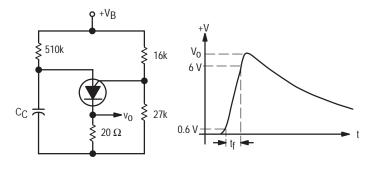


Figure 3. V_0 and t_r Test Circuit

TYPICAL VALLEY CURRENT BEHAVIOR

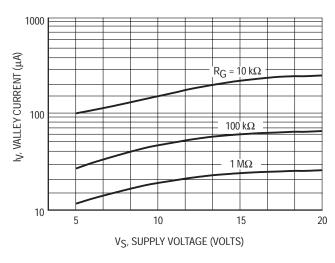
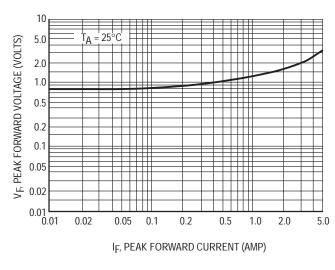



Figure 4. Effect of Supply Voltage

Figure 5. Effect of Temperature

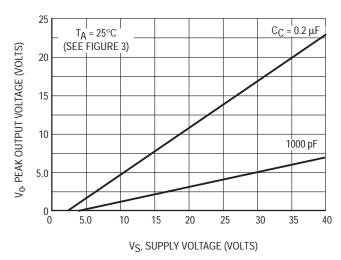


Figure 6. Forward Voltage

Figure 7. Peak Output Voltage

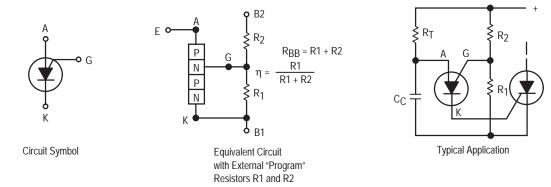
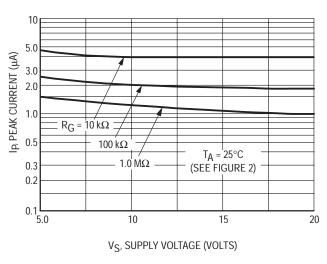



Figure 8. Programmable Unijunction

TYPICAL PEAK CURRENT BEHAVIOR

2N6027

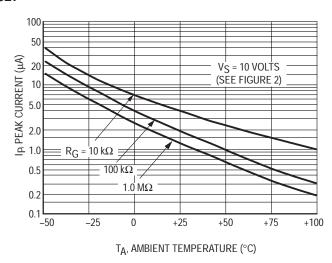
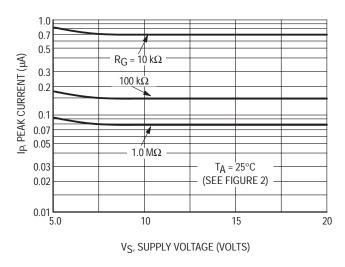



Figure 9. Effect of Supply Voltage and RG

Figure 10. Effect of Temperature and R_G

2N6028

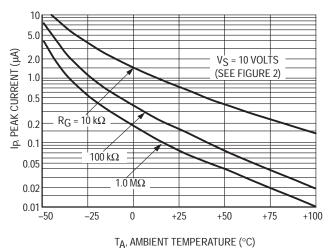


Figure 12. Effect of Temperature and R_G

TO-92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL

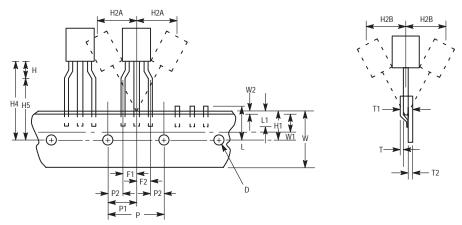
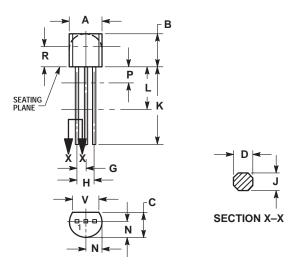


Figure 13. Device Positioning on Tape

			Specification			
		Inches		Millimeter		
Symbol	ltem		Max	Min	Max	
D	Tape Feedhole Diameter	0.1496	0.1653	3.8	4.2	
D2	Component Lead Thickness Dimension	0.015	0.020	0.38	0.51	
F1, F2	Component Lead Pitch	0.0945	0.110	2.4	2.8	
Н	Bottom of Component to Seating Plane	.059	.156	1.5	4.0	
H1	Feedhole Location	0.3346	0.3741	8.5	9.5	
H2A	Deflection Left or Right	0	0.039	0	1.0	
H2B	Deflection Front or Rear	0	0.051	0	1.0	
H4	Feedhole to Bottom of Component	0.7086	0.768	18	19.5	
H5	Feedhole to Seating Plane	0.610	0.649	15.5	16.5	
L	Defective Unit Clipped Dimension	0.3346	0.433	8.5	11	
L1	Lead Wire Enclosure	0.09842	_	2.5	_	
Р	Feedhole Pitch	0.4921	0.5079	12.5	12.9	
P1	Feedhole Center to Center Lead	0.2342	0.2658	5.95	6.75	
P2	First Lead Spacing Dimension	0.1397	0.1556	3.55	3.95	
Т	Adhesive Tape Thickness	0.06	0.08	0.15	0.20	
T1	Overall Taped Package Thickness	_	0.0567	_	1.44	
T2	Carrier Strip Thickness	0.014	0.027	0.35	0.65	
W	Carrier Strip Width	0.6889	0.7481	17.5	19	
W1	Adhesive Tape Width	0.2165	0.2841	5.5	6.3	
W2	Adhesive Tape Position	.0059	0.01968	.15	0.5	

NOTES:


- 1. Maximum alignment deviation between leads not to be greater than 0.2 mm.
- 2. Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm.
- 3. Component lead to tape adhesion must meet the pull test requirements.
- 4. Maximum non-cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches.
- 5. Holddown tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive.
- 6. No more than 1 consecutive missing component is permitted.
- 7. A tape trailer and leader, having at least three feed holes is required before the first and after the last component.
- 8. Splices will not interfere with the sprocket feed holes.

ORDERING & SHIPPING INFORMATION: 2N6027 and 2N6028 packaging options, Device Suffix

U.S.	Europe Equivalent	Shipping	Description of TO92 Tape Orientation
2N6027, 2N6028 2N6027, 2N6028RLRA 2N6028RLRM 2N6028RLRP	2N6027RL1	Bulk in Box (5K/Box) Radial Tape and Reel (2K/Reel) Radial Tape and Reel (2K/Reel) Radial Tape and Fan Fold Box (2K/Box) Radial Tape and Fan Fold Box (2K/Box)	N/A, Bulk Round side of TO92 and adhesive tape visible Flat side of TO92 and adhesive tape visible Flat side of TO92 and adhesive tape visible Round side of TO92 and adhesive tape visible

PACKAGE DIMENSIONS

TO-92 (TO-226AA) CASE 029-11 **ISSUE AJ**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
V	0.135		3 43		

STYLE 16: PIN 1. ANODE

2. GATE 3. CATHODE

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

 $\textbf{English \ Phone} \hbox{:}\ (+1)\ 303-308-7142\ (M-F\ 12:00pm\ to\ 5:00pm\ UK\ Time)$

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.