阅读申明

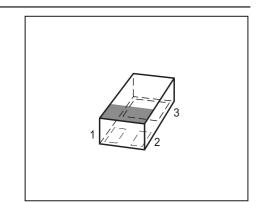
- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

NPN Silicon Germanium RF Transistor*

- High gain ultra low noise RF transistor
- Provides outstanding performance for a wide range of wireless applications up to 10 GHz
- Ideal for WLAN and all 5-6 GHz applications
- High OIP₃ and P_{-1dB} for driver stages
- High maximum stable and available gain $G_{\rm ms}$ = 21 dB at 1.8 GHz, $G_{\rm ma}$ = 11.5 dB at 6 GHz
- 150 GHz f_T-Silicon Germanium technology
- Extremly small and flat leadless package, reduced height 0.32 mm max.
- Pb-free (RoHS compliant) package¹⁾
- Qualified according AEC Q101
- * Short term description



ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration			Package
BFR750L3RH	R8	1=B	2=C	3=E	TSLP-3-9

¹Pb-containing package may be available upon special request

Maximum Ratings

Junction - soldering point²⁾

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}		V
$T_{A} > 0^{\circ}C$		4	
$T_{A} \leq 0^{\circ}C$		3.5	
Collector-emitter voltage	V_{CES}	13	
Collector-base voltage	V_{CBO}	13	
Emitter-base voltage	V_{EBO}	1.2	
Collector current	I _C	90	mA
Base current	I _B	9	
Total power dissipation ¹⁾	P _{tot}	360	mW
<i>T</i> _S ≤ 96°C			
Junction temperature	$T_{\rm i}$	150	°C
Ambient temperature	T_{A}	-65 150	
Storage temperature	$T_{ m stq}$	-65 150	
Thermal Resistance	,		
Parameter	Symbol	Value	Unit

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage	V _{(BR)CEO}	4	4.7	-	V
$I_{\rm C} = 3 \text{ mA}, I_{\rm B} = 0$. ,				
Collector-emitter cutoff current	<i>I</i> CES	-	-	100	μΑ
$V_{CE} = 13 \text{ V}, \ V_{BE} = 0$					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{CB} = 5 \text{ V}, I_{E} = 0$					
Emitter-base cutoff current	/ _{EBO}	-	-	10	μA
$V_{EB} = 0.5 \text{ V}, I_{C} = 0$					
DC current gain	h _{FE}	160	250	400	-
$I_{\rm C}$ = 60 mA, $V_{\rm CE}$ = 3 V, pulse measured					

2

≤ 150

Unit K/W

 $^{^1}T_{\mbox{S}}$ is measured on the collector lead at the soldering point to the pcb

²For calculation of R_{thJA} please refer to Application Note Thermal Resistance

 R_{thJS} demanded by P_{tot} and T_{S} , to be fulfilled by design

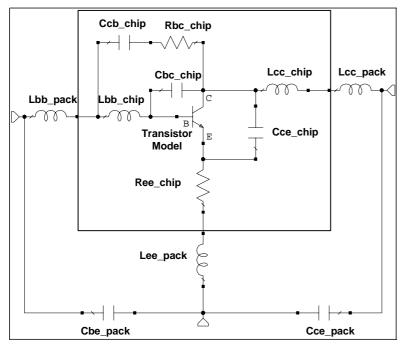
Electrical Characteristics at $T_{\Delta} = 25^{\circ}\text{C}$, unless otherwise specified

Parameter	Symbol		Unit		
		min.	typ.	max.	
AC Characteristics (verified by random sampling	g)				
Transition frequency	f_{T}	-	37	-	GHz
$I_{\rm C}$ = 60 mA, $V_{\rm CE}$ = 3 V, f = 2 GHz					
Collector-base capacitance	C _{cb}	-	0.24	0.42	pF
$V_{\text{CB}} = 3 \text{ V}, f = 1 \text{ MHz}, \text{ emitter grounded}$					
Collector emitter capacitance	C _{ce}	-	0.31	-	
$V_{CE} = 3 \text{ V}, f = 1 \text{ MHz}, \text{ base grounded}$					
Emitter-base capacitance	C _{eb}	-	0.97	-	
$V_{\text{EB}} = 0.5 \text{ V}, f = 1 \text{ MHz}, \text{ collector grounded}$					
Noise figure	F				dB
$I_{C} = 25 \text{ mA}, V_{CE} = 3 \text{ V}, f = 1.8 \text{ GHz}, Z_{S} = Z_{Sopt}$		-	0.6	-	
$I_{C} = 25 \text{ mA}, V_{CE} = 3 \text{ V}, f = 6 \text{ GHz}, Z_{S} = Z_{Sopt}$		-	1.1	-	
Power gain, maximum stable ¹⁾	G _{ms}	-	21	-	dB
$I_{\rm C} = 60 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}, \ Z_{\rm S} = Z_{\rm Sopt},$					
$Z_{L} = Z_{Lopt}$, $f = 1.8 \text{ GHz}$					
Power gain, maximum available ¹⁾	G _{ma}	-	11.5	-	dB
$I_{\rm C} = 60 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}, \ Z_{\rm S} = Z_{\rm Sopt},$					
$Z_L = Z_{Lopt}$, $f = 6 \text{ GHz}$					
Transducer gain	$ S_{21e} ^2$				dB
$I_{\rm C} = 60 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}, Z_{\rm S} = Z_{\rm L} = 50 \ \Omega,$					
f = 1.8 GHz		-	18	-	
$I_{\rm C} = 60 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}, \ Z_{\rm S} = Z_{\rm L} = 50 \ \Omega,$					
f = 6 GHz		-	8	_	
Third order intercept point at output ²⁾	IP ₃	-	29.5	-	dBm
$V_{CE} = 3 \text{ V}, I_{C} = 60 \text{ mA}, f = 1.8 \text{ GHz},$					
$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$					
1dB Compression point at output	P _{-1dB}	-	16.5	-	
$I_{\rm C} = 60$ mA, $V_{\rm CE} = 3$ V, $Z_{\rm S} = Z_{\rm L} = 50$ Ω ,					
f = 1.8 GHz					

 $^{^{1}}G_{\mathsf{ma}} = |S_{21e} / S_{12e}| \; (k - (k^2 - 1)^{1/2}), \; G_{\mathsf{ms}} = |S_{21e} / S_{12e}|$

²IP3 value depends on termination of all intermodulation frequency components.

Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz


SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):

Transistor Chip Data:

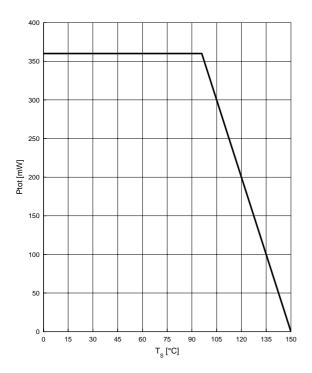
IS =	2.66 e-12	mA	BF =	753	-	NF =	1.015	-
VAF =	95	V	IKF =	292	mΑ	ISE =	1.54 e-11	mΑ
NE =	1.8	-	BR =	76	-	NR =	1	-
VAR =	1.33	V	IKR =	1.33	mA	ISC =	1 e-27	mΑ
NC =	2	-	RB =	1	Ω	IRB =	1 e15	Α
RBM =	0.9	Ω	RE =	20	$m\Omega$	RC =	0.9	Ω
CJE =	0.475	pF	VJE =	0.69	V	MJE =	0.085	-
TF =	0.0021	ns	XTF =	3	-	VTF =	2.1	V
ITF =	2540	mΑ	PTF =	0.5		CJC =	0.173	pF
VJC =	0.45	V	MJC =	0.31		XCJC =	0.01	-
TR =	1.2	ns	CJS =	0.325	pF	VJS =	0.65	V
MJS =	0.25	-	XTB =	-2.2	-	EG =	1.11	
XTI =	0.436	-	FC =	0.5		TNOM	25	°C
AF =	1	-	KF =	0	-			

All parameters are ready to use, no scalling is necessary.

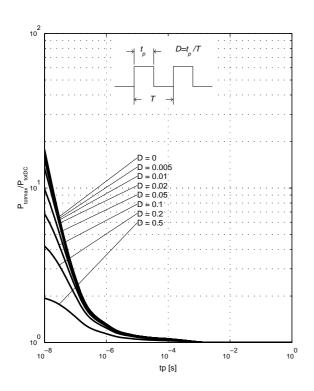
Package Equivalent Circuit:

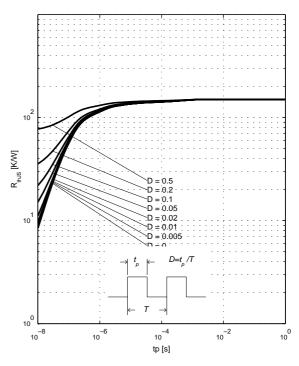
0.212 nΑ $L_{\rm bb_chip} =$ 0.07472 $L_{\rm cc\ chip} =$ nΗ 0.0184 $L_{\rm bb_pack} =$ nΗ nΗ $L_{\text{cc_pack}} =$ 0.277 nΗ 0.239 $L_{\text{ee}_\text{pack}} =$ 0.015 рF $C_{\rm bc\ chip} =$ 0.013 pF $C_{\text{cb_chip}} =$ 0.282 $C_{\text{ce_chip}} =$ pF 0.064 pF C_{be pack} = 0.0492 pF $C_{\text{ce}_\text{pack}} =$ 7 Ω $R_{\rm bc\ chip} =$ 0.566 Ω $R_{\text{ee chip}} =$ Valid up to 6GHz

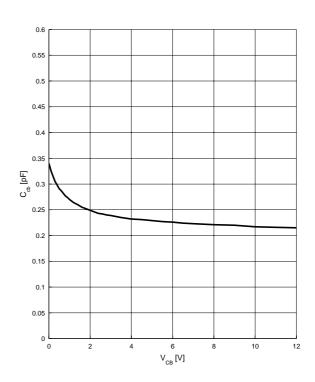
For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com


2007-04-26

4

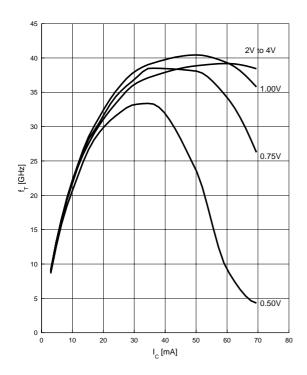

Total power dissipation $P_{tot} = f(T_S)$


Permissible Puls Load $R_{thJS} = f(t_p)$


Permissible Pulse Load

$$P_{\text{totmax}}/P_{\text{totDC}} = f(t_{p})$$

Collector-base capacitance $C_{cb} = f (V_{CB})$ f = 1 MHz

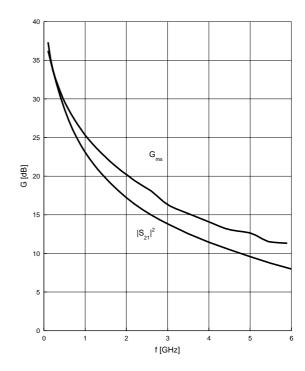


5

Transition frequency $f_T = f(I_C)$

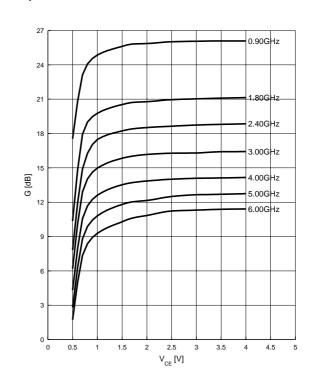
 V_{CE} = parameter, f = 1 GHz

Power gain G_{ma} , $G_{ms} = f(I_C)$

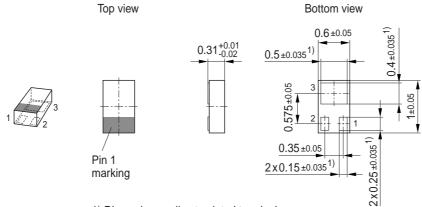

 $V_{CE} = 3 \text{ V}$

f = parameter

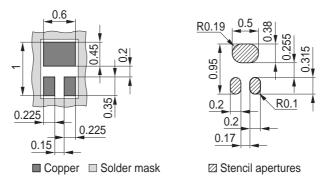
Power gain G_{ma} , $G_{ms} = f(f)$

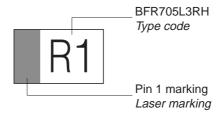

 $V_{CE} = 3 \text{ V}, I_{C} = 60 \text{ mA}$

Power gain G_{ma} , $G_{ms} = f(V_{CE})$


 $I_{\rm C} = 60 \, {\rm mA}$

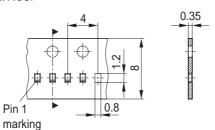
f = parameter


Package Outline


1) Dimension applies to plated terminal

Foot Print

For board assembly information please refer to Infineon website "Packages"



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 15.000 Pieces/Reel

7

Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

8 2007-04-26