阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

STD845DN40

Dual NPN high voltage transistors in a single package

Datasheet — production data

Features

- Low V_{CE(sat)}
- Simplified circuit design
- Reduced component count
- Fast switching speed

Applications

- Compact fluorescent lamp (CFL) 220 V mains
- Electronic ballast for fluorescent lighting

The device is a dual NPN high voltage power transistor manufactured using multi-epitaxial planar technology. It is housed in dual-island DIP-8 package with separated terminals to provide a high degree of assembly flexibility.

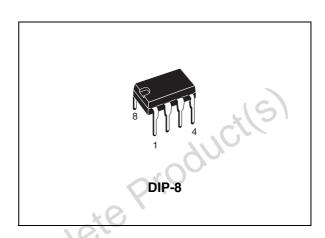


Figure 1. Internal schematic diagram

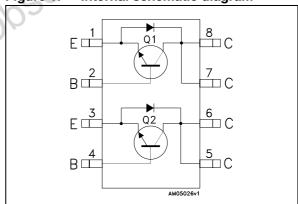


Table 1. Device summary

Order code	Marking	Package	Packaging
STD845DN40	D845DN40	DIP-8	Tube

Electrical ratings STD845DN40

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CBO}	Collector-base voltage (I _E = 0)	700	V
V _{CEO}	Collector-emitter voltage (I _B = 0)	400	V
V _{EBO}	Emitter-base voltage ($I_C = 0$, $I_B = 2$ A, $t_p < 10$ ms)	V _{(BR)EBO}	V
I _C	Collector current	4	Α
I _{CM}	Collector peak current (t _P < 5 ms)	8	А
I _B	Base current	2	Α
I_{BM}	Base peak current (t _P < 5 ms)	4	Α
D.	Total dissipation at T _{amb} = 25 °C single transistor	3	W
P _{TOT}	Total dissipation at T _{case} = 25 °C single transistor	45	W
T _{STG}	Storage temperature	-65 to 150	°C
T _J	Max. operating junction temperature	150	°C

Table 3. Thermal data

Symbol	Parameter	Value U	
R _{thJA} ⁽¹⁾	Thermal resistance junction-ambient (single transistor)	42	°C/W
R _{thJC}	Thermal resistance junction-case (single transistor)	2.7	°C/W

Device mounted on PCB area of 25 mm².

2 Electrical characteristics

 T_{case} = 25 °C unless otherwise specified.

Table 4. Electrical characteristics

	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	I _{CES}	Collector cut-off current (V _{BE} = 0)	V _{CE} = 700 V V _{CE} = 700 V T _c = 125 °C			100 500	μΑ μΑ
	I _{CEO}	Collector cut-off current (I _B = 0)	V _{CE} = 400 V			250	μΑ
	V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _E = 10 mA	9	7/70	18	V
	V _{CEO(sus)} ⁽¹⁾	Collector-emitter sustaining voltage (I _B = 0)	I _C = 100 mA	400),		٧
			$I_C = 0.5 \text{ A}$ $I_B = 0.1 \text{ A}$			0.7	V
	V _{CE(sat)} ⁽¹⁾	Collector-emitter	$I_C = 1 \text{ A}$ $I_B = 0.2 \text{ A}$			1	V
	- ()	saturation voltage	$I_C = 2.5 \text{ A}$ $I_B = 0.5 \text{ A}$ $I_C = 4 \text{ A}$ $I_B = 1 \text{ A}$		0.5	1.5	V V
		D	$I_C = 0.5 \text{ A}$ $I_B = 0.1 \text{ A}$			1.1	V
	V _{BE(sat)} ⁽¹⁾	Base-emitter saturation voltage	$I_C = 1 \text{ A}$ $I_B = 0.2 \text{ A}$			1.2	V
		15	$I_C = 2.5 \text{ A}$ $I_B = 0.5 \text{ A}$			1.3	V
	h _{FE} ⁽¹⁾	DC current gain	$I_C = 10 \text{ mA}$ $V_{CE} = 5 \text{ V}$	10			
			$I_C = 2 A$ $V_{CE} = 5 V$	12		32	
	V_{F}	Diode forward voltage	I _F = 2 A			2.5	V
	P1	Resistive load Storage time	I _C = 2 A				
10	t _f	Fall time	$I_{B(on)} = -I_{B(off)} = 400 \text{ mA}$		2.5		μs
Olle	4		$V_{CC} = 125 \text{ V}$ $t_p = 30 \mu\text{s}$		0.2		μs
0/6	t _s	Inductive load Storage time	I _C = 2 A, V _{CC} = 200 V				
	ւs t _f	Fall time	$V_{BE(off)} = -5 \text{ V } I_{B(on)} = 400 \text{ mA}$		0.6		μs
	ı		$R_{BB} = 0, L = 200 \mu H$		0.1		μs

^{1.} Pulse test: pulse duration \leq 300 µs, duty cycle \leq 2 %.

57

2.1 Electrical characteristics (curves)

Figure 2. DC current gain $(V_{CE} = 1.5 \text{ V})$

Figure 3. DC current gain $(V_{CE} = 5 V)$

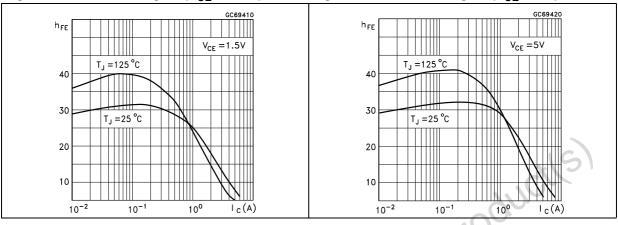


Figure 4. Collector-emitter saturation voltage Figure 5. Base-emitter saturation voltage

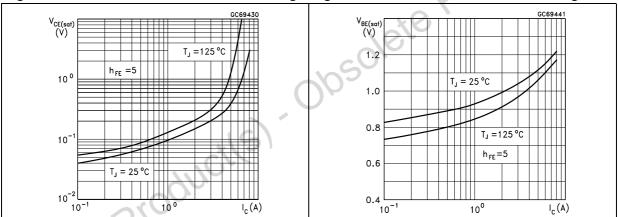


Figure 6. Inductive load fall time

Figure 7. Inductive load storage time

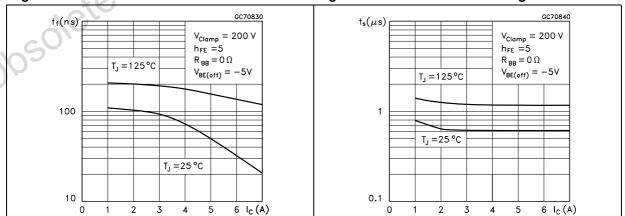


Figure 8. Resistive load fall time

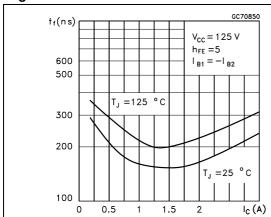
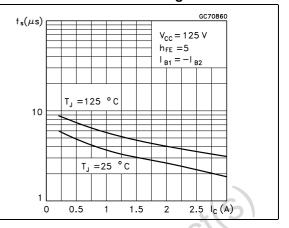
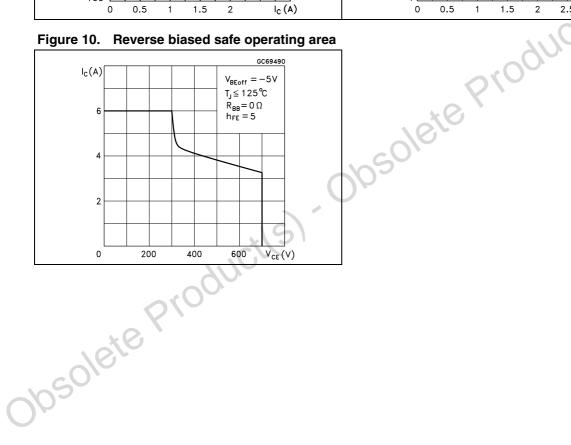
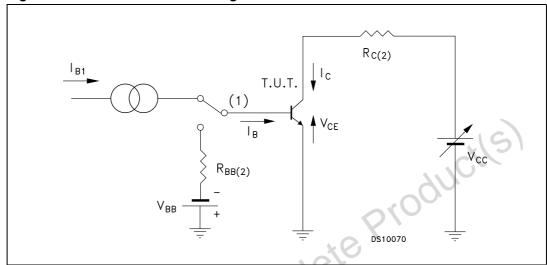


Figure 9. Resistive load storage time


Figure 10. Reverse biased safe operating area

Test circuits STD845DN40

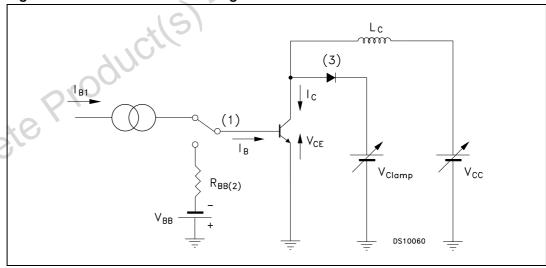

3 Test circuits

Figure 11. Resistive load switching test circuit

- 1. Fast electronic switch
- 2. Non-inductive resistor

Figure 12. Inductive load switching test circuit

- 1. Fast electronic switch
- 2. Non-inductive resistor
- 3. Fast recovery rectifier

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 5. DIP-8 mechanical data

		mm.		
	Dim.	Min.	Тур.	Máx.
	Α			4.80
	A1	0.50		90,
	A2	3.10		3.50
	A3	1.40		1.60
	b	0.38	1010	0.55
	b1	0.38	Olo	0.51
	b2	1.47	5	1.57
	b3	0.89		1.09
	С	0.21		0.35
	c1	0.20		0.30
	D	9.10		9.30
	D1	0.13		
	O É O	7.62		8.25
	E1	6.25		6.45
10	е		2.54	
Obsole	eA		7.62	
205	eB	7.62		10.90
O	eC	0		1.52
	L	2.92		3.81

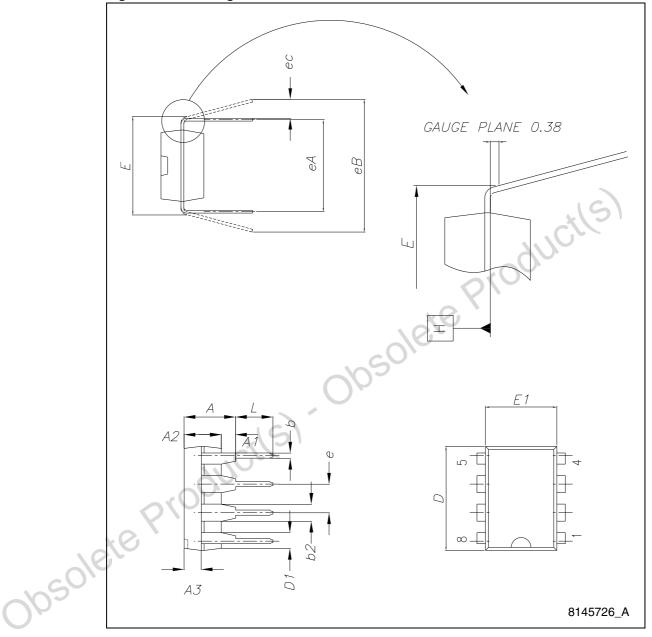


Figure 13. Drawing dimension DIP-8

8/10 Doc ID 17211 Rev 3

STD845DN40 Revision history

5 Revision history

Table 6. Document revision history

Date	Revision	Changes
03-Mar-2010	1	Initial release.
16-Apr-2010	2	Inserted P _{TOT} and R _{thJA} values <i>Table 2</i> and <i>Table 3 on page 2</i> .
23-Oct-2012	3	Modified P _{TOT} and R _{thJA} values in <i>Table 2</i> and <i>Table 3 on page 2</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

10/10 Doc ID 17211 Rev 3

