

1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任 何异议请及时告之,我们将妥善解决。

本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。

3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。

4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.

2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.

3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.

4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets".

SuperSOT4™ DUAL 20V PNP SILICON LOW SATURATION SWITCHING TRANSISTOR

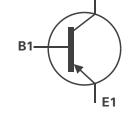
SUMMARY

 V_{ceo} =-20V; R_{sat} = 64m Ω ; I_{c} = -2.5A

DESCRIPTION

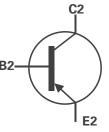
This new 4th generation ultra low saturation transistor utilises the Zetex matrix structure combined with advanced assembly techniques to give extremely low on state losses. This makes it ideal for high efficiency, low voltage switching applications.

FEATURES


- Extremely Low Equivalent On Resistance
- Extremely Low Saturation Voltage
- h_{FF} characterised up to 5A
- I_C=2.5A Continuous Collector Current
- MSOP8 package

APPLICATIONS

- DC DC Converters
- Power Management Functions
- Power switches
- Motor control


ORDERING INFORMATION

DEVICE	REEL SIZE (inches)	TAPE WIDTH (mm)	QUANTITY PER REEL
ZXT12P20DXTA	7	12mm embossed	1000 units
ZXT12P20DXTC	13	12mm embossed	4000 units

C1

E1	\bigcirc	00	C1
B1	2	Ъ	C1
E2	ε	9	C2
B2	4	2	🗆 C2

Top View

DEVICE MARKING

T12P20DX

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	LIMIT	UNIT
Collector-Base Voltage	V _{CBO}	-25	V
Collector-Emitter Voltage	V _{CEO}	-20	V
Emitter-Base Voltage	V _{EBO}	-7.5	V
Peak Pulse Current	I _{CM}	-10	А
Continuous Collector Current	Ι _C	-2.5	А
Base Current	IB	-500	mA
Power Dissipation at TA=25°C (a)(d) Linear Derating Factor	P _D	0.87 6.9	W mW/°C
Power Dissipation at TA=25°C (a)(e) Linear Derating Factor	P _D	1.04 8.3	W mW/°C
Power Dissipation at TA=25°C (b)(d) Linear Derating Factor	P _D	1.25 10	W mW/°C
Operating and Storage Temperature Range	T _j :T _{stg}	-55 to +150	°C

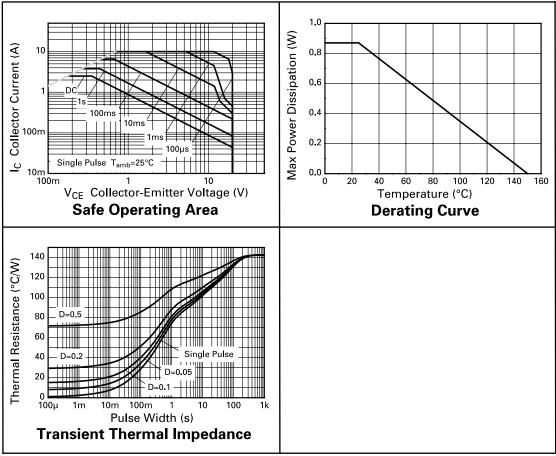
THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)(d)	$R_{\theta JA}$	143	°C/W
Junction to Ambient (b)(d)	$R_{\theta JA}$	100	°C/W
Junction to Ambient (a)(e)	$R_{ extsf{ heta}JA}$	120	°C/W

NOTES

(a) For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions

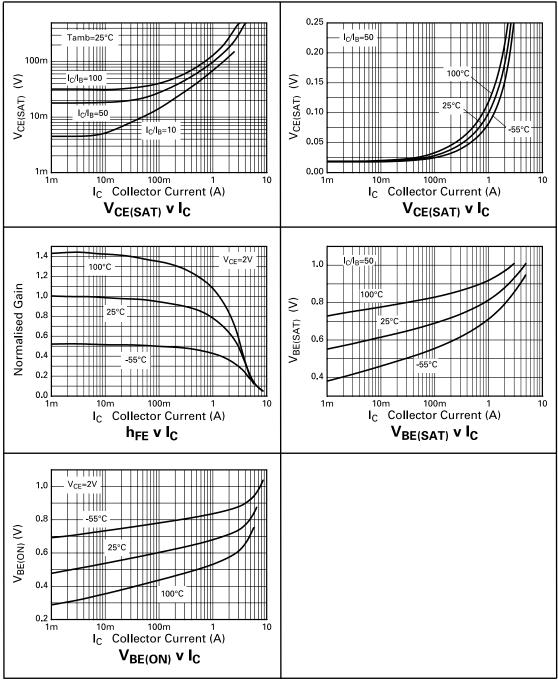
(b) For a device surface mounted on FR4 PCB measured at t \leq 5 secs.


(c) Repetitive rating - pulse width limited by maximum junction temperature. Refer to Transient Thermal Impedance graph.

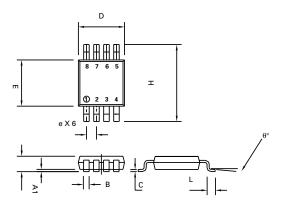
(d) For device with one active die.

(e) For device with two active die running at equal power.

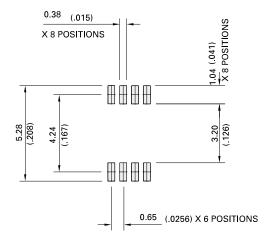
CHARACTERISTICS


ELECTRICAL CHARACTERISTICS (at Tam	_{th} = 25°C unless otherwise stated).
------------------------------------	--

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.	
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-25	-65		V	I _C =-100μA	
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	-20	-55		V	I _C =-10mA*	
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	-7.5	-8.5		V	I _E =-100μA	
Collector Cut-Off Current	I _{CBO}			-100	nA	V _{CB} =-20V	
Emitter Cut-Off Current	I _{EBO}			-100	nA	V _{EB} =-6V	
Collector Emitter Cut-Off Current	I _{CES}			-100	nA	V _{CES} =-20V	
Collector-Emitter Saturation Voltage	V _{CE(sat)}		-12 -95 -160	-16 -125 -200	mV mV mV	I _C =-0.1A, I _B =-10mA* I _C =-1A, I _B =20mA* I _C =-2.5A, I _B =-125mA*	
Base-Emitter Saturation Voltage	V _{BE(sat)}		-0.95	-1.0	V	I _C =-2.5A, I _B =-125mA*	
Base-Emitter Turn-On Voltage	V _{BE(on)}		-0.8	-0.85	V	I _C =-2.5A, V _{CE} =-2V*	
Static Forward Current Transfer Ratio	h _{FE}	300 300 200 50	450 450 350 80	900		$ I_{C} = -10mA, V_{C} = -2V* \\ I_{C} = -1A, V_{C} = -2V* \\ I_{C} = -2.5A, V_{C} = -2V* \\ I_{C} = -5A, V_{C} = -2V* $	
Transition Frequency	f _T		110		MHz	I _C =-50mA, V _{CE} =-10V f=-50MHz	
Output Capacitance	C _{obo}		45		pF	V _{CB} =-10V, f=1MHz	
Turn-On Time	t _(on)		90		ns	V _{CC} =-10V, I _C =-2A I _{B1} =I _{B2} =-40mA	
Turn-Off Time	t _(off)		325		ns		


*Measured under pulsed conditions. Pulse width=300 $\mu s.$ Duty cycle $\leq 2\%$

TYPICAL CHARACTERISTICS


PACKAGE DIMENSIONS

Conforms to JEDEC MO-187 Iss A

DIM	Millimetres		Inches	
	MIN	MAX	MIN	MAX
А		1.10		0.043
A1	0.05	0.15	0.002	0.006
В	0.25	0.40	0.010	0.016
С	0.13	0.23	0.005	0.009
D	2.90	3.10	0.114	0.122
е	0.65	BSC	0.0256	BSC
E	2.90	3.10	0.114	0.122
н	4.90	BSC	0.193	BSC
L	0.40	0.70	0.016	0.028
q°	0°	6°	0°	6°

PAD LAYOUT DETAILS

Zetex GmbH Streitfeldstraße 19 D-81673 München Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 Zetex Inc. 47 Mall Drive, Unit 4 Commack NY 11725 USA Telephone: (631) 543-7100 Fax: (631) 864-7630 Zetex (Asia) Ltd. 3510 Metroplaza, Tower 2 Hing Fong Road, Kwai Fong, Hong Kong Telephone:(852) 26100 611 Fax: (852) 24250 494

These are supported by agents and distributors in major countries world-wide © Zetex plc 2000

Internethttp://www.zetex.com

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

ISSUE 1 - MARCH 2000